Application Id

792

Dataset

Dataset ID

DT4-24c

Dataset Name

DT: National Health and Nutrition Examination Survey (NHANES) Restricted Data: 1999 to Present

Agency Name

National Center for Health Statistics

Researcher Information

Principal Investigator

PI/Lead Researcher

Lee Ann

Institutional Affiliation

University

Title

Faculty

Email

beta-testing-applicant-nchs@umich.edu

Phone Number

555-678-2389

Curriculum Vitae (CV)/Resume

NCHS-SampleApplication-CV-Lee.pdf

Citizenship

No
Data Access
Yes
Co-Principal Investigator
Co-PI/Lead Researcher
Dolce Gab
Institutional Affiliation
University
Title
Faculty
Email
dgab@email.com
Phone Number
555-678-2214
Curriculum Vitae (CV)/Resume
NCHS-SampleApplication-CV-Dolce.pdf
Citizenship
Yes
Special Sworn Status
No
Data Access
Yes

Yes

Special Sworn Status

Research Description

Project Title

The Association Between Serum Vitamin D Levels and Childhood Obesity

Project Duration

36

Funding

Funded by the National Institute for Obesity Research, Grant No. 555

Timeline

NCHS-SampleApplication-Timeline-Lee.pdf

Research Question

What is the relationship between vitamin D deficiency and obesity in US children aged 6-18 years? How does latitude of residence and season of lab testing influence this relationship?

Demonstrated Need

Survey, Years, Files: NHANES 2003-2006 Demographic variables and sample weights Physical examination measurements Lab component: Vitamin D Dietary supplements questionnaire Restricteduse Data: if LAT is missing then assign the value. to the new variable; else if LAT < X then assign the value 1 to the new variable; else if LAT is >= X then assign the value 2 to the new variable. LAT = Location (latitude) of residence will be used to control for sun exposure. Here are categories for the derived variable: LAT can be dropped after the derived variable for sun exposure is created. Month of MEC exam/lab draw will be used to control for season. Here are categories for the derived season variable: If month of exam in (1, 2, 12) then Season = Winter; else if month of exam in (3, 4, 5) then Season = Spring; else if month of exam in (6, 7, 8) then Season = Summer; else if month of exam in (9, 10, 11) then Season = Fall; else Season = . Month of MEC exam/lab draw can be dropped after the derived variable Season is created. Merge Variables: SEQN will be used to merge the public and restricted data files.

Study Population

Children 6-18, excluding pregnant females, those with implausible BMIs, and those with missing covariate data.

Project Abstract

Obesity has been linked to vitamin D deficiency in adults and adolescents. We aim to determine if an association exists between obesity and inadequate serum vitamin D levels among U.S. children. We will use serum 25- hydroxyvitamin D (vitamin D) and body measurement data from U.S. children aged 6-18 years examined in the National Health and Nutrition Examination Survey (NHANES) from 2003-2006 and evaluate the relationship between serum vitamin D levels and obesity, defined as a body mass index (BMI) ≥ 95 th percentile. Vitamin D levels will be

dichotomized as deficient (<15ng/ml) or not deficient in logistic regression models to assess odds of vitamin D deficiency accounting for age, sex, race/ethnicity, poverty status, and vitamin D- containing supplement use. We seek to adjust for two additional factors associated with serum vitamin D levels that may influence our results: latitude of residence and season of lab testing. These variables are restricted and only available through the Research Data Center.

Variables Requested

NCHS-SampleApplication-VariablesRequested-Lee.pdf

Time, Geographic, and Other Units Requested

latitude of residence (North vs South)

Work Location

Hyattsville, MD

Software Requirements

SAS/SUDAAN

Methodology

NCHS-SampleApplication-Methodology-Lee.pdf

List of References

NCHS-SampleApplication-References-Lee.pdf

Project Products

Presentation to EIS officers and potential peer-review publication.

Requested Output

NCHS-SampleApplication-RequestedOutput-Lee.pdf

Agency Benefits

Our study seeks to examine the relationship between serum vitamin D levels, measured as 25-hydroxyvitamin D and dichotomized as vitamin D deficient or not, and obesity, defined as a BMI ≥ 95th percentile for age, in children aged 6–18 years. Prior research in adolescents and adults has shown a positive association between vitamin D deficiency and obesity. By establishing an association between low serum vitamin D levels and obesity in children across a wider age range, we aim to identify an easy- to-obtain and objective measure with which to target children who may be at greater risk for vitamin D deficiency. Using this measure, children deficient in vitamin D may be more readily identified and started on supplementation to correct it. Because vitamin D may be involved in improving other health measures or preventing other chronic diseases or conditions, treating deficiency may have benefits that extend beyond improved bone health.