

ORAU TEAM Dose Reconstruction Project for NIOSH

Oak Ridge Associated Universities | NV5|Dade Moeller | MJW Technical Services

Page 1 of 297

DOE Review Release 03/15/2024

Savannah River Site – Internal Dosimetry Co-Exposure Data		Effective Date: Supersedes:		Rev. 00 03/05/2024 ORAUT-OTIB-0081 Rev 06-C		
Subject Expert(s):	Matthew G. Arno and Nancy Ch	nalmers				
Document Owner Approval:	Zachariah C. Tribbett Signature James M. Mahathy, Document Owner	e on File for	Approval	Date:	03/01/2024	
Concurrence:	Signature on File John M. Byrne, Objective 1 Manager		Concurre	nce Date:	03/05/2024	
Concurrence:	Signature on File Scott R. Siebert, Objective 3 Manager		Concurre	nce Date:	03/05/2024	
Concurrence:	Vickie S. Short Signature on Fi	le for	Concurre	nce Date:	03/05/2024	
Approval:	Signature on File Timothy D. Taulbee, Associate Director for	r Science	Approval	Date:	03/05/2024	
REPLACE THE	FOR DOCUMENTS MARKED AS A PRIOR REVISION AND DISCARD / D			,	VISION.	
	☑ New ☐ Tota	al Rewrite	□ F	Revision		

PUBLICATION RECORD

EFFECTIVE	REVISION	
DATE	NUMBER	DESCRIPTION
02/08/2013	00	New technical information bulletin to provide internal coworker data for the Savannah River Site. Incorporates formal internal and NIOSH review comments. Training required: As determined by the Objective Manager. Initiated by Matthew Arno.
04/01/2013	01	Revision initiated to correct the values provided in Tables 5-6, Type S uranium intake rates for 1968 through 2007, 5-10, changed end date from 2006 to 2007, A-3, plutonium bioassay data for 1955 through 2007, and A-8, neptunium bioassay data for 1991 through 2007. Incorporates formal internal review comments. No changes were made as a result of formal NIOSH review. No sections were deleted. Training required: As determined by the Objective Manager. Initiated by Matthew G. Arno.
12/16/2013	02	Revision initiated to add dose reconstruction guidance for radionuclide assignment in response to an ABRWH request. Text added in Section 5.0 and a new Table 5-1 added. Intake rates for Cm and Cf added for the pre-1995 time period. Incorporates formal internal and NIOSH review comments. Training required: As determined by the Objective Manager. Initiated by Matthew G. Arno.
11/22/2016	03	Revision initiated to address the coworker study Implementation Guide requirements for americium, thorium, and tritium. Incorporates formal internal and NIOSH review comments. Constitutes a total rewrite of the document. Training required: As determined by the Objective Manager. Initiated by Matthew G. Arno.
03/13/2019	04	Revision initiated to address the coworker study implementation guide requirements for plutonium, uranium, neptunium, cesium, cobalt, and mixed fission products. Adds executive summary. Incorporates formal internal and NIOSH review comments. Constitutes a total rewrite of the document. Training required: As determined by the Objective Manager. Initiated by Matthew G. Arno.
09/01/2020	05	Revision initiated to add the intake rates for type SS plutonium, use the ORAUT-RPRT-0096 multiple imputation method for americium bioassay data, update americium and thorium intake rates, and reference ORAUT-RPRT-0070 for thorium intake rates. Incorporates formal internal and NIOSH review comments. Constitutes a total rewrite of the document. Training required: As determined by the Objective Manager. Initiated by Matthew G. Arno.
11/19/2021	06-A	Revision initiated to update the americium analysis to incorporate the results of reentering the americium data and recompleting the quality assurance effort. The statistical analysis for americium and the intake modeling for americium and thorium were revised accordingly. Sections 4.1, 5.1, 5.8 and Attachments A, D, E.1, E.4.9, F.1, and F.8 were updated. Initiated by John M. Byrne and authored by Matthew G. Arno.
12/16/2021	06-B	Incorporates formal internal review comments. Initiated by John M. Byrne and authored by Matthew G. Arno.
01/24/2022	06-C	Incorporates formal NIOSH review comments. Training required: As determined by the Objective Manager. Initiated by John M. Byrne and authored by Matthew G. Arno.

EFFECTIVE DATE	REVISION NUMBER	DESCRIPTION
03/05/2024	Rev 00	New document created to convert ORAUT-OTIB-0081, Rev. 06-C, "Internal Dosimetry Co-Exposure Data for the Savannah River Site," to ORAUT-TKBS-0003-7, Rev. 00, "Savannah River Site – Internal Dosimetry Co-Exposure Data." Incorporates formal internal and NIOSH review comments. Training required: As determined by the Objective Manager. Initiated by John M. Byrne and authored by Matthew G. Arno.

TRADEMARK INFORMATION

 $\mathsf{TEVA}^{\$}$ is a registered trademark of Teva Pharmaceutical Industries in the United States and/or other countries.

TABLE OF CONTENTS

SECI	ION			IIILE	PAGE
Acror	nyms an	d Abbrevi	iations		21
7.1	Introd	uction			24
	7.1.1				
	7.1.2				
	7.1.3			Cohort	
7 2	Conor	ral Matha	de		26
1.2	7.2.1				
	1.2.1	7.2.1.1		ness of Claims Tracking System Data	
			Accuracy	of Claims Tracking System Data	27
	7.2.2				
	7.2.2	7.2.2.1		assification Background	
				assification Methodology	
				assification Quality Assurance	
	7.2.3			d Dose	
7.1 7.2	Padio	nuclide A	nalvees		30
1.5	7.3.1	Δmerici	ııaıyses		30 38
	7.0.1	7.3.1.1		quacy	
		7.0.1.1	7.3.1.1.1	•	
			7.3.1.1.2	Applicability to Unmonitored Workers	
			7.3.1.1.3	Bioassay Analysis Techniques	
			7.3.1.1.4	Paired Measurements Sample Variance	
		7.3.1.2		lation	
		7.0.1.2	7.3.1.2.1	Logbook Data Completeness	
			7.3.1.2.2	Data Quality	
			7.3.1.2.3	Data Interpretation	
			7.3.1.2.4	Data Exclusion	
		7.3.1.3		Analysis	
		7.3.1.4		deling	
	7.3.2			gg	
		7.3.2.1		quacy	
				Personnel Monitoring	
			7.3.2.1.2	Applicability to Unmonitored Workers	
			7.3.2.1.3	Bioassay Analysis Techniques	
		7.3.2.2		lation	
		7.3.2.3		deling and Statistical Analysis	
	7.3.3	Plutoniu			
		7.3.3.1		quacy	
			7.3.3.1.1	Personnel Monitoring	
			7.3.3.1.2	Applicability to Unmonitored Workers	
			7.3.3.1.3	Bioassay Analysis Techniques	
		7.3.3.2	Data Valid	lation	
			7.3.3.2.2	Data Interpretation	52
			7.3.3.2.3	Data Exclusion	
		7.3.3.3		Analysis	
		7.3.3.4		deling	

Revision No. 00

Effective Date: 03/05/2024

Page 5 of 297

Document No. ORAUT-TKBS-0003-7

Docu	ment No.	ORAU	I-TKBS-0003-7	Revision No. 00	Effective Date: 03/05/2024	Page 6 of 297
	7.40	D. (0.7
	7.4.3					
	7.4.4					
	7.4.5 7.4.6					
	7.4.0					
	7.4.8					
	7.4.0	1110110	4111			
7.5	Conclu	usions .				103
7.6	Attribu	ıtions a	nd Annotations			104
Refer	ences					105
Gloss	ary					112
Λ Τ ΤΛ	CHMEN	IT A	OLIALITY ASSI		RY	116
	_					
	CHMEN				REQUENCIES	
	CHMEN	_			LITY AMERICIUM DATA	160
ATTA	CHMEN	IT D			ATISTICAL ANALYSIS	
					BS-0003-7, REVISION 0, A	•
ATTA	CHMEN	IT E	CO-EXPOSUR	E DATA FIGURES		191
TABL	.E			LIST OF TABI	ES	PAGE
7-1						
7-2						
7-3					esults	
7-4 7-5	OTVV (determi	nation QA check	results	and actimate	30
7-5 7-6					ness estimateetion rates of americium bas	
7-0						
7-7						
7-8					etion rates of plutonium base	
7-9						
7-10	Calcul	ated 50	oth- and 84th-per	centile urinary excr	etion rates of uranium based	d on a
7-11					etion rates of FPs based on	
- 40						
7-12					etion rates of ⁶⁰ Co based on	
7 40	lognor	mal fit	to the TWOPOS	data, 1955 to 1970	b - do	
7-13	Calcul	ated 50	יווו- and א4th-per	centile '"'Us Whole	body content based on a log	Juormai tit
7-14						
7-1 4 7-15					etion rates of neptunium bas	
0						
				,		

7-16	Calculated 50th- and 84th-percentile whole body burdens of neptunium based on a lognormal fit to the TWOPOS data, 1970 to 1989	84
7-17	Extraction efficiencies with DDCP	
7-17 7-18	Radionuclides of concern potentially present at SRS facilities	
7-10	nonCTW type M ²⁴¹ Am intake rates	
7-19	CTW type M ²⁴¹ Am intake rates	
7-21	Tritium annual doses and GSDs	
7-21	Type M plutonium gross alpha intake rates	
7-23	Type S plutonium gross alpha intake rates	
7-23 7-24	Type SS plutonium gross alpha intake rates	
7-25	nonCTW type F ²³⁴ U intake rates	
7-26	nonCTW type M ²³⁴ U intake rates	
7-27	nonCTW type N C Intake rates	
7-28	CTW type 5	
7-29	CTW type M ²³⁴ U intake rates	
7-30	CTW type W U intake rates	
7-31	Type F ²³³ U nonCTW intake rates	
7-32	Type M ²³³ U nonCTW intake rates	
7-33	Type S ²³³ U nonCTW intake rates	
7-34	Type F ²³³ U CTW intake rates	
7-35	Type M ²³³ U CTW intake rates	
7-36	Type S ²³³ U CTW intake rates	
7-37	Type F FP (90Sr) intake rates	
7-38	Type F ¹³⁷ Cs nonCTW intake rates	
7-39	Type F ¹³⁷ Cs CTW intake rates	
7-40	Type M ⁶⁰ Co intake rates	
7-41	Type S ⁶⁰ Co intake rates	
7-42	Neptunium intake rates	
7-43	Type M ²³² Th intake rates	
7-44	Type S ²³² Th intake rates	
B-1	SRDB Ref IDs for REAC/TS chelation data	
B-2	1968 bioassay frequencies	
B-3	1970 bioassay frequencies	
B-4	Early 1971 bioassay frequencies	
B-5	Late 1971 bioassay frequencies	
B-6	1976 bioassay frequencies	
B-7	1985 bioassay frequencies	
B-8	1989 bioassay frequencies	
C-1	Summary of bottle dates for 51 of 60 reviewed results	
D-1	CTW Master Table cross-reference	
D-2	CTW occupation titles	
D-3	nonCTW occupation titles	
E-1	Summary of ²⁴¹ Am nonCTW intake rates and dates	
E-2	Summary of ²⁴¹ Am CTW intake rates and dates	
E-3	Summary of plutonium nonCTW intake rates and dates, type M	
E-4	Summary of plutonium nonCTW intake rates and dates, type S	
E-5	Summary of plutonium nonCTW intake rates and dates, type SS	
E-6	Summary of plutonium CTW intake rates and dates, type M	
E-7	Summary of plutonium CTW intake rates and dates, type S	
E-8	Summary of plutonium CTW intake rates and dates, type SS	
E-9	Summary of uranium nonCTW intake rates and dates, type F	
E-10	Summary of uranium nonCTW intake rates and dates, type M	
F-11	Summary of uranium nonCTW intake rates and dates type S	

E-12 E-13 E-14 E-15 E-16 E-17 E-18 E-19 E-20 E-21 E-22 E-23 E-24 E-25 E-26	Summary of uranium CTW intake rates and dates, type F Summary of uranium CTW intake rates and dates, type M Summary of uranium CTW intake rates and dates, type S Summary of FP (strontium) nonCTW intake rates and dates Summary of FP (strontium) CTW intake rates and dates Summary of 60 Co nonCTW type M intake rates and dates Summary of 60 Co nonCTW type S intake rates and dates Summary of 60 Co CTW type M intake rates and dates Summary of 60 Co CTW type S intake rates and dates Summary of 137 Cs nonCTW type F intake rates and dates Summary of 137 Cs CTW type F intake rates and dates Summary of 237 Np nonCTW intake rates and dates Summary of 237 Np CTW intake rates and dates Summary of type M 232 Th intake rates and dates Summary of type S 232 Th intake rates and dates Summary of type S 232 Th intake rates and dates	267269273273273279279293
	LIST OF FIGURES	
<u>FIGUI</u>	RE TITLE	<u>PAGE</u>
7-1	Maintenance work on High Level Drain Line	
7-2	Construction work on the High Level Drain Line	
7-3	Maintenance on MSMs	
7-4	Construction removing MSM covers	
7-5	Americium nonCTW TWOPOS data box and whisker plot	
7-6	Americium CTW TWOPOS data box and whisker plot	
7-7	Tritium bioassay sample frequency	
7-8 7-9	Tritium nonCTW individual dose data box and whisker plot	
7-9 7-10	Plutonium type M nonCTW TWOPOS data box and whisker plot beginning in 1955	
7-10 7-11	Plutonium type M CTW TWOPOS data box and whisker plot beginning in 1955	
7-11	Plutonium type S nonCTW TWOPOS data box and whisker plot beginning in 1955	
7-13	Plutonium type S CTW TWOPOS data box and whisker plot beginning in 1955	
7-14	Plutonium type SS nonCTW TWOPOS data box and whisker plot beginning in 1955	
7-15	Plutonium type SS CTW TWOPOS data box and whisker plot beginning in 1955	
7-16	Plutonium type M nonCTW TWOPOS data box and whisker plot beginning in 1971	
7-17	Plutonium type M CTW TWOPOS data box and whisker plot beginning in 1971	
7-18	Plutonium type S nonCTW TWOPOS data box and whisker plot beginning in 1971	59
7-19	Plutonium type S CTW TWOPOS data box and whisker plot beginning in 1971	59
7-20	Plutonium type SS nonCTW TWOPOS data box and whisker plot beginning in 1971	
7-21	Plutonium type SS CTW TWOPOS data box and whisker plot beginning in 1971	
7-22	Uranium type F nonCTW TWOPOS data box and whisker plot	
7-23	Uranium type F CTW TWOPOS data box and whisker plot	
7-24	Uranium type M nonCTW TWOPOS data box and whisker plot	
7-25	Uranium type M CTW TWOPOS data box and whisker plot	
7-26	Uranium type S nonCTW TWOPOS data box and whisker plot	
7-27	Uranium type S CTW TWOPOS data box and whisker plot	
7-28 7-29	FP nonCTW TWOPOS data box and whisker plot FP CTW TWOPOS data box and whisker plot	
7-29	Cobalt-60 nonCTW TWOPOS data box and whisker plot, Type M	
7-30 7-31	Cobalt-60 CTW TWOPOS data box and whisker plot, Type M	
7-32	Cobalt-60 nonCTW TWOPOS data box and whisker plot, Type S	
	1 / J1	- · · · · · · · · · · · · · · · · · · ·

Revision No. 00

Effective Date: 03/05/2024

Page 8 of 297

Document No. ORAUT-TKBS-0003-7

Effective Date: 03/05/2024 Document No. ORAUT-TKBS-0003-7 Revision No. 00 Page 9 of 297 7-33 Cesium-137 body burden nonCTW TWOPOS data box and whisker plot79 7-34 7-35 7-36 Neptunium urinalysis nonCTW TWOPOS data box and whisker plot85 7-37 7-38 Neptunium whole body burden nonCTW TWOPOS data box and whisker plot86 7-39 7-40 Neptunium urinalysis nonCTW TWOPOS data box and whisker plot, 1970 to 1989......87 7-41 Neptunium urinalysis CTW TWOPOS data box and whisker plot, 1970 to 1989......87 7-42 Sample analysis procedure for extracting americium, curium, californium, plutonium, 7-43 neptunium, and EU90 A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 C-1 C-2 C-3 E-1 Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, 1963 to E-2 Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, 1966 to E-3 Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, 1968 to E-4 Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, 1972 to Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-5 compared with measured bioassay results (dots), nonCTW 50th percentile, 1983 to Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-6 compared with measured bioassay results (dots), nonCTW 84th percentile, 1963 to Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-7 compared with measured bioassay results (dots), nonCTW 84th percentile, 1966 to E-8 Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, 1968 to Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-9 compared with measured bioassay results (dots), nonCTW 84th percentile, 1972 to

Revision No. 00 Document No. ORAUT-TKBS-0003-7 Effective Date: 03/05/2024 Page 10 of 297 Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-10 compared with measured bioassay results (dots), nonCTW 84th percentile, 1983 to Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-11 compared with measured bioassay results (dots), CTW 50th percentile, 1966 to 1967, Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-12 compared with measured bioassay results (dots), CTW 50th percentile, 1968 to 1971, Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-13 compared with measured bioassay results (dots), CTW 50th percentile, 1972 to 1982, Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, 1983 to 1989, Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-15 compared with measured bioassay results (dots), CTW 84th percentile, 1966 to 1967, Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-16 compared with measured bioassay results (dots), CTW 84th percentile, 1968 to 1971, Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-17 compared with measured bioassay results (dots), CTW 84th percentile, 1972 to 1982, Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-18 compared with measured bioassay results (dots), CTW 84th percentile, 1983 to 1989, Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, all years, E-20 Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, all years, Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) E-21 compared with measured bioassay results (dots), CTW 50th percentile, all years, type M... 211 E-22 Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all years, type M... 211 E-23 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-24 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-25 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-26 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-27 rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW

Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 11 of 297 E-28 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-29 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-30 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-31 rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-32 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-33 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-34 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-35 rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-36 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-37 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-38 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-39 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-40 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-41 rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-42 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots). 84th percentile, nonCTW E-43 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-44 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 12 of 297 E-45 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-46 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW E-47 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake E-48 rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-49 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-50 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake E-51 rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake E-52 rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW E-53 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 E-55 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 E-56 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1971 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-57 rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1982 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-58 rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955 E-59 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1961 E-60 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1967 E-61 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1971

Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 13 of 297 E-62 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1982 E-63 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 E-64 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-65 rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 E-66 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1971 E-67 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1982 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-68 rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-69 rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1961 E-70 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1967 E-71 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1971 E-72 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1982 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake E-73 rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake E-74 rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake E-75 rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1971 E-77 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1982 E-78 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955 Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 14 of 297 E-79 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1961 E-80 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1967 E-81 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1971 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake E-82 rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1982 to 1990, type SS241 E-83 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, E-84 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, all years, type M.......242 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-85 rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-86 rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, E-87 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, E-88 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, E-89 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all years, type M245 E-90 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all E-91 Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake E-92 rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all E-93 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots). CTW 50th percentile, all E-94 Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all E-95 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 15 of 297 E-96 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all E-97 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all E-98 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates E-99 (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, E-100 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, E-101 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type M.......252 E-102 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, E-103 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW, 1953, E-104 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW, 1954, E-105 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1955 to E-106 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1957 to E-107 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1963 to E-108 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1968 to E-109 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1982 to E-110 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1986 to E-111 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1953, E-112 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1954, Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 16 of 297 E-113 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1955 to E-114 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1957 to E-115 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1963 to E-116 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1968 to E-117 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1982 to E-118 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1986 to E-119 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 to E-120 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1957 to E-121 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1963 to E-122 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1968 to E-123 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955 to E-124 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1958 to E-125 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1963 to E-126 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1968 to E-127 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all vears, type S E-128 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all E-129 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years,

Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 17 of 297 E-130 Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, E-131 Predicted FP (strontium) bioassay results calculated using IMBA-derived strontium intake rates (line) compared with measured bioassay results (dots), 50th percentile, E-132 Predicted FP (strontium) bioassay results calculated using IMBA-derived strontium intake rates (line) compared with measured bioassay results (dots), 84th percentile, E-133 Predicted FP (strontium) bioassay results calculated using IMBA-derived strontium intake rates (line) compared with measured bioassay results (dots), 50th percentile, E-134 Predicted FP (strontium) bioassay results calculated using IMBA-derived strontium intake rates (line) compared with measured bioassay results (dots), 84th percentile, E-135 Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, E-136 Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, E-137 Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, E-138 Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, E-139 Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type M... 271 E-140 Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type M... 272 E-141 Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type S.... 272 E-142 Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type S.... 272 E-143 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1960 to E-144 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1967 to E-145 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1960 to E-146 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1967 to E-147 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1960 to 1966, E-148 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 to 1990,

Revision No. 00 Document No. ORAUT-TKBS-0003-7 Effective Date: 03/05/2024 Page 18 of 297 E-149 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1960 to 1966, E-150 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1967 to 1990, E-151 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, E-152 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, E-153 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type F.... 278 F-154 Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type F.... 279 E-155 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1961 to E-156 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1964 to E-157 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1968 to E-158 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1970 to E-159 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1973 to E-160 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1975 to E-161 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1980 to E-162 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1961 to E-163 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1964 to E-164 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1968 to E-165 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1970 to E-166 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1973 to

Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 19 of 297 E-167 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1975 to E-168 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1980 to E-169 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 to 1963, E-170 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1970 to 1972. E-171 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1973 to 1974, E-172 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1975 to 1979, E-173 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1980 to 1989, E-174 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1961 to 1963, E-175 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1970 to 1972, E-176 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1973 to 1974, E-177 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1975 to 1979, E-178 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1980 to 1989, E-179 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, E-180 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, E-181 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots). 84th percentile, nonCTW all years. E-182 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, E-183 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years,

Revision No. 00 Document No. ORAUT-TKBS-0003-7 Effective Date: 03/05/2024 Page 20 of 297 E-184 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, WBCs, E-185 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years. E-186 Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, WBCs, E-187 Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 11/01/1972 E-188 Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 11/01/1972 E-189 Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 11/01/1972 to E-190 Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 11/01/1972 to E-191 Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 11/01/1972 E-192 Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 11/01/1972 E-193 Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 11/01/1972 to E-194 Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 11/01/1972 to

Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 21 of 297

ACRONYMS AND ABBREVIATIONS

ABRWH Advisory Board on Radiation and Worker Health

ACD Analytical Chemistry Division
AEC U.S. Atomic Energy Commission

AQL acceptance quality level AWE atomic weapons employer

C&D Construction and Demolition

CATI computer-assisted telephone interview

CPF Californium Processing Facility

cpm counts per minute
CTW construction trade worker
CV coefficient of variation

d day

D&D decontamination and decommissioning

DCAS Division of Compensation Analysis and Support

DDCP dibutyl-*N*,*N*-diethylcarbamylphosphonate

DNA delayed neutron analysis
DOE U.S. Department of Energy
DOL U.S. Department of Labor
dpm disintegrations per minute

DTPA diethylene triamine pentaacetic acid

DU depleted uranium

E&I Electrical and Instrumentation

EEOICPA Energy Employees Occupational Illness Compensation Program Act of 2000

EU enriched uranium

F fast (absorption type)

FP fission product

GM geometric mean

GSD geometric standard deviation

HDEHP bis(2-ethylhexyl) phosphoric acid

HEU highly enriched uranium

HLC high-level cave HP Health Physics

HPRED Health Protection Radiation Exposure Database

hr hour

HTO tritiated water vapor

IA insufficient amount
ID identification (number)
IDOT Internal Dosimetry Tool

IMBA Integrated Modules for Bioassay Analysis

in. inch

IREP Interactive RadioEpidemiological Program

keV kiloelectron-volt, 1,000 electron-volts

kg kilogram

Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 22 of 297

KPA kinetic phosphorescence analysis

L liter

LIP lost in process

LTPD lot tolerance percent defective

m meter

M moderate (absorption type)
MDA minimum detectable amount

MFP mixed fission product

MFPG mixed fission product-gamma

mL milliliter

MSM Master/Slave Manipulator

n number of datapoints checked in a dataset N total number of data points in a dataset

nCi nanocurie ng nanogram

NIOSH National Institute for Occupational Safety and Health

NMD Nuclear Materials Division

NOCTS NIOSH DCAS Claims Tracking System

NP neptunium analysis

NTA nuclear track emulsion, type A

NU natural uranium

OC Operational Characteristic

ORAU Oak Ridge Associated Universities

ORAUT ORAU Team

pCi picocurie ppm parts per million

PRID payroll ID (number with optional dash separator)

PUREX plutonium-uranium extraction

QA quality assurance

REAC/TS Radiation Emergency Assistance Center/Training Site

ROI region of interest RU recycled uranium

S slow (absorption type)

SCD Separation Chemistry Division SEC Special Exposure Cohort

SED Separations Engineering Division

SRDB Ref ID Site Research Database Reference Identification (number)

SRS Savannah River Site
SS super S (absorption type)
SSN Social Security Number

T&T Transportation and Traffic Department

TBD technical basis document
TIB technical information bulletin

TIOA triisooctylamine

Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 23 of 297

TRM target residual material

TWOPOS time-weighted one person-one statistic

U.S.C. United States Code

WBC whole body count

yr year

α producer's risk (ORAU Team risk)

β consumer's risk (DCAS risk)

μCi microcurie μg microgram μm micrometer

§ section or sections

7.1 INTRODUCTION

Technical basis documents (TBDs) and site profile documents are not official determinations made by the National Institute for Occupational Safety and Health (NIOSH) but are rather general working documents that provide historical background information and guidance to assist in the preparation of dose reconstructions at particular U.S. Department of Energy (DOE) or Atomic Weapons Employer (AWE) facilities or categories of DOE or AWE facilities. They will be revised in the event additional relevant information is obtained about the affected DOE or AWE facility(ies), such as changing scientific understanding of operations, processes, or procedures involving radioactive materials. These documents may be used to assist NIOSH staff in the evaluation of Special Exposure Cohort (SEC) petitions and the completion of individual dose reconstructions under Part B of the Energy Employees Occupational Illness Compensation Program Act of 2000 (EEOICPA).

In this document the word "facility" is used to refer to an area, building, or group of buildings that served a specific purpose at a DOE or AWE facility. It does not mean nor should it be equated to an "AWE facility" or a "DOE facility." The term "AWE facility" is defined in EEOICPA to mean "a facility, owned by an atomic weapons employer, that is or was used to process or produce, for use by the United States, material that emitted radiation and was used in the production of an atomic weapon, excluding uranium mining or milling." 42 *United States Code* (U.S.C.) § 7384I(5). On the other hand, a DOE facility is defined as "any building, structure, or premise, including the grounds upon which such building, structure, or premise is located—(A) in which operations are, or have been, conducted by, or on behalf of, the [DOE] (except for buildings, structures, premises, grounds, or operations ... pertaining to the Naval Nuclear Propulsion Program); and (B) with regard to which the [DOE] has or had—(i) a proprietary interest; or (ii) entered into a contract with an entity to provide management and operation, management and integration, environmental remediation services, construction, or maintenance services." 42 U.S.C. § 7384I(12). The DOE determines whether a site meets the statutory definition of an AWE facility and the U.S. Department of Labor (DOL) determines if a site is a DOE facility and, if it is, designates it as such.

Under EEOICPA, a Part B cancer claim for benefits must be based on an energy employee's eligible employment and occupational radiation exposure at a DOE or AWE facility during the facility's designated time period and location (i.e., a "covered employee with cancer"). After DOL determines that a claim meets the eligibility requirements under Part B of EEOICPA, DOL transmits the claim to NIOSH for a dose reconstruction. EEOICPA provides, among other things, guidance on eligible employment and the types of radiation exposure to be included in an individual dose reconstruction. Under EEOICPA, eligible employment at a DOE facility includes individuals who are or were employed by DOE and its predecessor agencies, as well as their contractors and subcontractors at the facility. 42 U.S.C. § 7384I(11). Also under EEOICPA, the types of exposure to be included in dose reconstructions for DOE employees are those radiation exposures incurred in the performance of duty. As such, NIOSH includes all radiation exposures received as a condition of employment at DOE facilities in its dose reconstructions for covered employees, which may include radiation exposures related to the Naval Nuclear Propulsion Program at DOE facilities, if applicable. This is because NIOSH does not determine the fraction of total measured radiation exposure at a DOE facility that is contributed by the Naval Nuclear Propulsion Program at the DOE facility during a specified period of time for inclusion in dose reconstruction.

NIOSH does not consider the following types of exposure as those incurred in the performance of duty as a condition of employment at a DOE facility. Therefore these exposures are not included in dose reconstructions for covered employees [NIOSH 2010]:

- Background radiation, including radiation from naturally occurring radon present in conventional structures, and
- Radiation from X-rays received in the diagnosis of injuries or illnesses or for therapeutic reasons.

7.1.1 Purpose

Some employees at DOE sites were not monitored for potential intakes of radioactive material, or the records of such monitoring are incomplete or unavailable. In such cases, data from monitored workers with similar exposure potential can be used to assign an internal dose to address potential intakes of radioactive material. The purpose of this TBD is to provide monitored co-exposure information for calculating and assigning occupational internal doses to employees at the Savannah River Site (SRS) for whom no or insufficient monitoring records exist.

Attributions and annotations, indicated by bracketed callouts and used to identify the source, justification, or clarification of the associated information, are presented in Section 7.6.

7.1.2 Scope

Most of this TBD chapter is organized by radionuclide evaluated. Section 7.3 contains discussion of factors applicable to multiple radionuclides including source data for the co-exposure study and the stratification evaluation. For each radionuclide, subsection 1 addresses data adequacy and information regarding who was monitored, the applicability of that data to unmonitored workers, and bioassay techniques. Subsection 2 discusses source data completeness, representativeness, quality, and interpretation. Subsection 3 presents the statistical analysis, and subsection 4 contains the results of the intake modeling and the derived intake rates to be used for unmonitored workers. Section 7.4 contains the summary guidance for dose reconstructors for all radionuclides on assignment of intakes by facility and time period.

7.1.3 Special Exposure Cohort

January 1, 1953, through September 30, 1972

The Secretary of the U.S. Department of Health and Human Services has added the following class of SRS employees to the SEC [Sebelius 2012, p. 3]:

All employees of the Department of Energy, its predecessor agencies, and their contractors and subcontractors who worked at the Savannah River Site from January 1, 1953, through September 30, 1972, for a number of work days aggregating at least 250 work days, occurring either solely under this employment or in combination with work days within the parameters established for one or more other classes of employees included in the Special Exposure Cohort.

The Secretary based this designation on the findings of NIOSH's SEC Evaluation Report, which found it is not feasible to estimate internal exposures with sufficient accuracy for all externally monitored employees from January 1, 1953, through December 31, 1957, whose records have dosimetry codes A, G, CMX, or TNX. Further, NIOSH found that it lacked sufficient internal thorium monitoring data or other data or methods to support bounding internal thorium doses for SRS workers who may have worked with thorium in the 700 Area or the CMX/TNX Area from January 1, 1958 through September 30, 1972, whose records have dosimetry codes 5A, 5C, 6B through 6Z, 12D through 12H, or 12J through 12Z [NIOSH 2011].

October 1, 1972, through December 31, 1990

The Secretary has also added the following class [Becerra 2021, p. 3]:

All construction trade employees of Department of Energy subcontractors [excluding employees of the following prime contractors who worked at the Savannah River Site in Aiken, South Carolina, during the specified time periods: E. I. du Pont de Nemours and Company, October 1, 1972, through March 31, 1989; and Westinghouse Savannah

Effective Date: 03/05/2024

Revision No. 00

River Company, April 1, 1989, through December 31, 1990], who worked at the Savannah River Site from October 1, 1972, through December 31, 1990, for a number of work days aggregating at least 250 work days, occurring either solely under this employment or in combination with work days within the parameters established for one or more other classes of employees included in the Special Exposure Cohort.

The Secretary based this designation on the recommendation of the Advisory Board on Radiation and Worker Health (ABRWH) which found that dose reconstruction for unmonitored subcontractor construction trades workers who should have been monitored via the permit-driven job-specific monitoring program is not feasible using the co-exposure models NIOSH developed due to the nature of radiological work assigned to transient subcontractor construction trades workers, the lack of assurance provided their bioassay monitoring, and identified gaps in the permit-driven job-specific monitoring program. The ABRWH concluded that the completeness and representation of subcontractors who were, or should have been, monitored has not been sufficiently established [Anderson 2021].

Although the ABRWH found that it is not possible to completely reconstruct radiation doses for either class. NIOSH intends to use any internal and external monitoring data that might become available for an individual claim and that can be interpreted using existing NIOSH dose reconstruction processes or procedures to conduct partial dose reconstructions for employees who do not qualify for inclusion in the SEC [NIOSH 2011; Anderson 2021].

7.2 **GENERAL METHODS**

This section provides information on the general selection characteristics of the data and methods of analysis. More detailed, radionuclide-specific information is provided in Section 7.4.

ORAUT-OTIB-0019, Analysis of Coworker Bioassay Data for Internal Dose Assignment [ORAUT 2005], describes the general process NIOSH uses to analyze bioassay data for the assignment of doses to individuals based on co-exposure results. ORAUT-PLAN-0014, Coworker Data Exposure Profile Development [ORAUT 2004a], describes the approach and processes to develop reasonable exposure profiles based on available dosimetric information for workers at DOE sites. DCAS-IG-006, Criteria for the Evaluation and Use of Coworker Datasets provides the criteria to evaluate the adequacy and completeness of co-exposure data [NIOSH 2020a]. In the sections below, the data and evaluations required by the guidance are provided for each evaluated radionuclide.

Bioassay data in the NIOSH DCAS Claims Tracking System (NOCTS) for SRS employees were used to develop a representative database of co-exposure bioassay data using the guidance of ORAUT-OTIB-0075, Use of Claimant Datasets for Coworker Modeling [ORAUT 2016a], and NIOSH [2015] except for americium and neptunium, for which analytical laboratory logbooks were used.

A statistical analysis of the data was performed according to ORAUT-OTIB-0019 [ORAUT 2005], ORAUT-RPRT-0053, Analysis of Stratified Coworker Datasets [ORAUT 2014a], and ORAUT-RPRT-0096, Multiple Imputation Applied to Bioassay Coworker Models [ORAUT 2021]. The results were entered in the Integrated Modules for Bioassay Analysis (IMBA) and Internal Dosimetry Tool (IDOT) computer programs to obtain intake rates for the assignment of dose distributions.

7.2.1 **Data Sources**

There are two basic data sources for the co-exposure study. The first is NOCTS bioassay data from energy employees who worked at SRS. The second is data from laboratory logbooks for americium and neptunium. For these radionuclides, there is insufficient NOCTS bioassay data available to

perform a co-exposure study. The NOCTS sources are discussed in this section and the logbook data sources are discussed in the radionuclide-specific discussions below.

7.2.1.1 Completeness of Claims Tracking System Data

For the period before availability of the Health Protection Radiation Exposure Database (HPRED) data (before 1991), NOCTS data were used as the best available compilation of data in a usable form (i.e., electronic spreadsheet or database). This dataset contained over 260,000 tritium bioassay results and over 100,000 nontritium in vitro bioassay results for samples submitted by more than 1,500 workers between 1954 and 1990. There are also records of almost 15,000 in vivo (whole body or chest) counts. NOCTS data are not complete because not all workers are claimants. However, the NOCTS data are assumed to be a random sampling that can be considered representative of co-exposure bioassay data based on the analysis in ORAUT-OTIB-0075 [ORAUT 2016a]. This analysis demonstrated that, for three evaluated cases, claimant datasets can be considered to be random samples of the complete dataset, and the analysis provides justification for applying this assumption to other sites and datasets. For this effort, bioassay data for claimants with a claim number less than 35,000 with U.S. Department of Labor (DOL)-verified employment at SRS was used. No effort was made to find bioassay data for claimants with employment at SRS that was not DOL-verified or outside of verified employment periods.

Although the individuals in NOCTS are a subset of all workers at SRS, it is still desirable that the data for those particular individuals be complete. Reviews were performed to check that the data entry process from the NOCTS hardcopy records was complete. This review was performed in two steps based on ORAUT-RPRT-0086, *Internal Dosimetry Coworker Data Completeness Test* [ORAUT 2017a]. The first step consisted of verifying that all individuals with at least 1 day of verified employment at SRS during the period of interest who had any bioassay data in their NOCTS records also had some bioassay records in the respective NOCTS in vivo and in vitro bioassay datasets. This was a claim-level check for the existence of any data at all and not a check of each bioassay datum in the records. Any missing records found during this process were corrected with additional data entry and the process repeated until no further missing records were found.

The second step consisted of selecting a sampling of NOCTS claims with bioassay data and verifying that all the data in the hardcopy records was in the applicable dataset. Using this method it was determined that the missing data rate for the NOCTS in vitro bioassay dataset had a point estimate of 0.79% with a 95% confidence interval of 0.03% to 3.99%. The NOCTS in vivo dataset had a point estimate of 0.64% with a 95% confidence interval of 0.25% to 1.35%. Completeness testing was done during the development of ORAUT-RPRT-0086 [ORAUT 2017a]; therefore, the exact method of ORAUT-RPRT-0086 was not used. The details of the results of these evaluations are contained in Attachment A.

7.2.1.2 Accuracy of Claims Tracking System Data

The NOCTS data are split into three types: in vivo bioassay data, nontritium in vitro bioassay data, and tritium in vitro bioassay data. The data quality on each piece was evaluated separately. The tritium bioassay data quality review is discussed in Section 7.3.2.2. For each data source, the data entry process was subjected to quality assurance (QA) checks in accordance with ORAUT-RPRT-0078, *Technical Basis for Sampling Plan* [ORAUT 2016b]. This report describes a sampling plan that computes "transcription" error rates, which quantify the degree to which an electronic dataset agrees with the original hardcopy records. The sampling plan is used to select a random sample of the data and to estimate the transcription error rates. Statistical sampling techniques, in which a comparison of the electronic dataset to the original data is performed after the transcription is complete, are used to confirm that the specified unacceptable error rates have not been exceeded and to generate error rate confidence intervals. Sampling plans for "critical" fields are created with an unacceptable error rate of

1% or higher, while plans for "all" fields have an unacceptable error rate of 5% or higher. Critical fields are those fields containing an analytical result or that are used to identify an individual payroll ID (number with optional dash separator) (PRID).

The data transcription accuracy of the in vitro bioassay data was checked in accordance with ORAUT-RPRT-0078 [ORAUT 2016b]. The nuclide, result, and "<" fields were checked with a maximum 1% allowable error rate. The QA check resulted in a point estimate error rate of 0.25% with a 95% confidence interval of 0.13% to 0.45%. The fields checked above, sample date, and other nonblank data entry fields were evaluated with a maximum 5% allowable error rate. The QA check resulted in a point estimate error rate of 0.46% with a 95% confidence interval of 0.13% to 1.17%. Therefore, the dataset passed the QA check. The details of the results of the evaluation are contained in Attachment A.

The data transcription accuracy of the in vivo bioassay data was checked in accordance with ORAUT-RPRT-0078 [ORAUT 2016b]. The nonblank fields relevant to calculating a body burden were checked with a maximum 1% allowable error rate. The QA check resulted in a point estimate error rate of 0.43% with a 95% confidence interval of 0.26% to 0.67% excluding errors associated with PRIDs that do not affect use of the data. The fields checked above, sample date, and other nonblank data entry fields were evaluated with a maximum 5% allowable error rate. The QA check resulted in a point estimate error rate of 2.75% with a 95% confidence interval of 1.77% to 4.06%. Therefore, the dataset passed the QA check. The details of the results of the evaluation are contained in Attachment A.

7.2.2 Stratification

For co-exposure models, a priori stratification is based on either (1) differences (or similarities) of the radiological work being conducted (i.e., exposure potential) or (2) known differences (or similarities) in radiological monitoring methodology. At SRS, there are three main groups of radiological workers: Operations (Production), Maintenance (DuPont Construction), and Construction. For the stratification of the co-exposure models, NIOSH chose to stratify based on the type of radiological work being conducted because all three groups have a variety or hybrid of Health Physics (HP) personnel monitoring as discussed in more detail below. The main difference in exposure from different types of radiological work is based on normal operations versus off-normal operations.

In the case of SRS, there are differences in the nature of the exposure potential between construction trade workers (CTWs) (Maintenance and Construction) and operations workers that warrant considering them as two distinct cohorts or strata in relation to co-exposure models.

Operations or Production workers (chemists, physicists, operators, technicians, material handlers, etc.) generally work with larger quantities of radioactive materials, but the materials are well controlled in gloveboxes or fume hoods to prevent or minimize worker exposure. Radiological work conducted by CTWs, on the other hand, typically involves contaminated equipment (i.e., smaller quantities), but the engineered controls (e.g., gloveboxes, cabinets, fume hoods, duct work) that contain the radioactive materials are sometimes intentionally compromised to conduct renovation or repair. As a result, the CTW exposure potential could be (1) less than operations workers, (2) equal to operations workers, or (3) greater than operations workers depending on the work being conducted. Further complicating the total exposure is the duration of the specific job. In some cases, the magnitude of the exposure for CTW could be greater but the duration is shorter (days or weeks). This could result in a similar total intake as experienced by operations but with a different delivery.

In general, the exposure potential for CTWs is viewed as being potentially greater but of a shorter duration. This difference in exposure potential based on the type of work being conducted is the main justification for the stratification. As a result, NIOSH decided to a priori stratify the Operations (nonCTW) and CTW models for SRS.

7.2.2.1 Worker Classification Background

At SRS, CTWs were deployed temporarily but frequently for short periods to perform specific tasks usually pertaining to facility construction and modification, system maintenance, and decontamination. CTWs worked around the site, while production and operation staff normally worked at fixed locations. While workers assigned to Roll 2 were employed directly by DuPont Construction and Bechtel Savannah River, workers in Rolls 4 and 5, or subcontractors, were employed at SRS for periods ranging from a few days to years. One [redacted] worked lengthy periods between [redacted] and [redacted], while another [redacted] worked varying periods from [redacted] through [redacted]. Workers from each of the rolls were assigned to do jobs. Some tasks such as painting were mostly performed by workers in Roll 4 and some in Roll 5, while others such as instrument maintenance were mostly performed by workers in Roll 2. Maintenance and decontamination tasks shared common exposure profiles where workers in some of the jobs could be exposed to higher levels of radiation from surface and airborne contamination.

An important note is that not all construction work involved exposure to radioactive materials. The larger projects (new facilities) tended to be clean construction work, so radiological monitoring was not required. Maintenance work in a radiological facility tended to be mostly radiological in nature, which is believed to be the reason there were semi-dedicated crafts workers as part of the maintenance team at each of the major facilities.

Bingham [1997] stated that the DOE stated in Congressional testimony that it is likely that the greatest risks to workers on its sites involve mainly the construction workers, including those who are involved in decommissioning, dismantling of facilities, and maintenance or repair activities. According to SRS procedures, the HP Department provided the same level of job planning and monitoring to these tasks as it did with operation and production tasks [DuPont 1959–1971, no date a]. HP surveyed and collected air monitoring samples in all areas where release of contamination was possible. NIOSH has collected air monitoring data for areas where known CTW work was performed. Examples of personnel monitoring include monitoring of a job by a CTW on Roll 4, subsequent monitoring of CTW contamination in a job in H Area in 1972 [DuPont 1972], and monitoring of [redacted] on Roll 2 contaminated in a similar job in F Area in [redacted] [DuPont 1974]. [Redacted] were exposed to high concentrations of airborne [redacted] contamination while working in Savannah River Laboratory in [redacted] [DuPont 1974–1984]. In 1979, a Roll 4 [redacted] received an intake of radioactive material while removing a hood at Savannah River Laboratory [DuPont 1974–1984].

Another important note is that while there were differences in biological monitoring, <u>all</u> groups participated in biological monitoring for radiological intakes, especially when workplace conditions required follow up. The differences are the degree to which each group had routine, job-specific, and incident monitoring. Workplace monitoring and radiological protection requirements appear to be based on exposure potential, not on group or craft.

Based on a review of hundreds of job plans and radiological surveys for SRS, it is clear that multiple types of crafts workers participated on the same type of jobs with common exposure potential. For example, maintenance workers (DuPont Construction) were cutting a 4-in. section from the High Level Drain Line as shown in Figure 7-1. The pipe ends were to be plugged and taped. The workers wore two pair of coveralls and respirators and had continuous coverage by HP during the job. In a similar job, subcontractor construction trades workers, pipefitters from B. F. Shaw, were connecting the cell line to the high-level drain line in a laboratory as shown in Figure 7-2. Like the maintenance workers, the pipefitters were required to wear two pair of coveralls and respirators when the line was being connected (i.e., line break). HP also covered this job, continuously monitoring for contamination.

	305	PLAN		Onorette		
Date:				Operation		
Time of Operation: g . A.m.		- Describe	operation, s	afety precau	tions.	and
contact: LSD		 radiation 	and contami	nation contr	ol pre	aution
Done by: manyo,				and the same	. p. c.	
Phone: 3401	_	Title of	1-1-0		-	
		O of	Job: Remo	ve a 7	seul	an .
PROTECTIVE CLOTHING	Rq'd	1 the	2" HL. 5	nam lin	0/20	el .
. Coveralls One (Two	NG 0	Se and	01 +	-40	LI	10
2. Respirator	1:-	200000	oxed) at	well m	200	The.
3. Breathing Air		lend the	at wood	JA. B	-005	•
. Cap (Hood	1	1/4	East Sid	1000		
. Shoe Covers	12				J-14	
. Gloves	1	Mast	over gilt	to la R-	2 4	
. TLD Badge (By)		T 4:				
. Self-reading Dosimeter	14		sample	D for GE	D test	la
. Safety Belt		corrision	~ 1	1		1
. Rubber Boots		COMMISSION BY	N -500 500 500 500 100 500 500 500 500 500		-	
. Lab Coat	-	-	-,			_
. RT-1 Pers. Rad. Monitor	-	Main	to use the	e bas m	the	2
. Neutron Badge	-	14-1	This sam	10 (70	1	-
	-	way	nia san	ple of p	ihe,	E. Come
·		Plus a	ndo of sip	o with in	Mobiler	
JOB EVALUATION	1 0-131	-0	14 17	2 22-4	00-0	_
. Does job alter ventilation	Rq'd	alaper	of Tape.			
patterns?		"				
Rigging approved?	-	-				
. Building Services?						
. Will operation effect other jobs	V	1		// see	750 550	
and/or personnel?	1					
Does job require a special						
procedure?						
. Has area been properly cleared				and the second second		
for job?	1	-	ESTIMATED	EXPOSURE		
Procedure review for HLC				Body	Left	Right
personnel?	1 1		Contract of the Contract of th	Penci1	Hand	Hand
Procedure review with Crafts				mR	mrem	mren
(Maint., E&I, T&T)?	1 1			3		
Fire Hazard?	-					-
Lockout required?				3		3
Door ich caufment				950		8
Does job equipment meet safety specs?						
Voice Announcement				7		de service de
Preplan required	-			100		
riepian required	-					
MONITODING						
MONITORING	Rg'd		-		-	
Self-monitoring permitted						7
Monitoring at start of job by	1				8	1
Radiation Control						
Intermittent monitoring by	27		AUTHORIZ	CATIONS		
Radiation Control						
Continuous monitoring by	/	HLC Supv:_		A		
Radiation Control		Rad. Cont. Su	inv			
CUDVEY DECINE	-	STATE OF THE				-
SURVEY RESULTS		Maint. Sup	/:_			
vovad bus		T&T Supv:				
veyed by:	_	2. 10 f 19 f				-
3mR Kn gen work an	ea.	E&I Supv:	3 0 5			
mi you gen work co-	05					
	. OF				25	
					10	

Figure 7-1. Maintenance work on High Level Drain Line [DuPont 1983a].

Repair of the Master/Slave Manipulator (MSM) arms was almost exclusively a maintenance operation as shown in Figure 7-3. There are multiple job plans for this type of work because the repairs appeared to be routine, but a new Job Plan was filled out for each repair. In general, if the maintenance or repair involved the clean side (nonradiologically contaminated or Master components), no Health Physicist coverage was needed. If any part of the slave end (contaminated cell side) was disturbed, a Health Physics Survey was required. Two coveralls and respirators were required when dictated by the Radiation Control Survey. HP coverage was intermittent during this operation depending on the repairs being conducted. In general, very few construction operations

ax W	Authorizat	ions	
	Red and the second	10	
ite: /-2-86_ Time:	Operating Supv		
ocation: TLC COZZ	OHP Supv:		
esponsible Supv	Maint. Supv:		
hone Number: 51941	Const.		
ork Group: ATD	E & I Supv:		
escribe operation, safety precaution, and ra	diation and contamination c	ontrols	
connect HLD up in C-07	7 (Call Lines 7	-v HL	0)
Regnators regimed in C-077	la Oi a i	Con A	0 6
reginal on C-077	with their leing	winer	es (
			
JOB EVALUATION Rg'd	· PROTECTIVE CL	OTHING	Rq'd
. Does job require a special	1. Lab Coat		
procedure? (attach if applicable)	2. Coveralls one	(two)	×
. Preplan meeting?	3. Shoe Covers 4. Rubber Overshoes-cl	oth boots	×
. Procedure Review with Personnel . Will work effect other jobs and/	4. Rubber Overshoes-cl	Cloth	X
or personnel?	6. Air supplied plasti		^
. Does job alter ventilation	7. Safety Belts	- 1 4	
patterns in building?	8. Cap, mood		X
. Does area require preparation?	9. Respirator		X.
(containment huts, etc? . Review evacuation procedures and	MONITORIN	iG.	-
routes with personnel?	1. Self-monitoring per	mitted	
. Does job and work area meet	 Self-monitoring per Monitoring at start 	of job	1
safety standards?	by OHP		
Rescue plan?	Continuous monitori	ng by OHP	X
. Standby man? . Lockout required?	4. Intermittent monito	ring by	7
. Fire hazards?	5. TLD Badge (Beta-Gam	ma)	×
. Building Services?	6. TLND Badge (Neutron	s)	-
Refer to Radiation/Contamination	Self-reading dosime	ters	
Checksheet on reverse side.	FEYTHIYER PUT	AFUAL	
	ESTIMATED EXP	USUKE	Total
CHOVEN DECHI TO		Penci1	Est.
SURVEY RESULTS Exposure rates:		Ponding	Exp.
Exposure rates:	Name PR#	Reading	
SURVEY RESULTS Exposure rates: 2 m R/h gen Bbad.	. Name PR#	Reading	
Exposure rates:	Name PR	Reading	
Exposure rates:	Name PRi	Reading	
Exposure rates:	Name PRi	Reading	
Exposure rates:	Name PR	Reading	
Exposure rates:	Name PR	Reading	
Exposure rates: 2 m R/h gen Bhgal.	Name PR	Reading	
Exposure rates:	Name PRi	Reading	

Figure 7-2. Construction work on the High Level Drain Line [DuPont 1986].

mention the MSMs. One job noted removal of the MSM covers, which exposed the workers to the cell as shown in Figure 7-4. This is a similar exposure potential to when Maintenance would be working on the slave end of the manipulator (i.e., an opening into the contaminated cell). In this instance, pipefitters, sheet metal workers, and laborers all participated in the same job. They all wore two coveralls and respirators. In addition, HP provided monitoring throughout the job. Stratification by CTW type in this example is not appropriate because all of the workers had the same exposure

		OR	GINAL	SRDI	3# 157063	p. 80		
		JOB	PLAN					
	Date: 11-11-81		-	Opera	tion			
	Time of Operation: 8-4		Describe of and radiat	peration.	safety	preca	tlon	
	Contact.		and radiat	ion and co	ntamina	ition (contr	
,	Done by: Maintenance		precautions	s.				
	Phone: 2008					-		
-			Title of Jo	ob: gem	nu e	nor s	war	
L	PROTECTIVE CLOTHING	Rq'd	Repair MS	M ripa	2 man	gudal	or C	
E	1. Coveralls One Two	X	The second second					
	2. Assault Mask *	X	per stand	lard MSM				
	3. Breathing Air		Maintenar	ice techni	ques.			
	4. Cap Hood		- Millite Gas	15.				
L	5. Shoe Covers	X						
	6. Gloves	X	Padiation	Control	SHEVEY			
E	7. TLD Badge (βγ)	X						
	8. Self-reading Dosimeter		required	when dist	urbing		7 1 1 1 1 2	
Г	9. Safety Belt any parts on slave end							
	10. Rubber Boots				Circ	815.51	-	
Г	11. Lab Coat		of thru	tube.				
r	2. RT-1 Pers. Rad. Monitor							
ľ	13. Neutron Badge	X			00 80001			
	14.		* Assault	mask requi	red			
L	···							
Г	JOB EVALUATION	Rq'd		tated by			-	
H	1. Does job alter ventilation		Radiation	n Control	survey			
া	patterns?	no						
ŀ	2 Bigging appropried?							
ŀ	2. Rigging approved" 3. Building Services"	yes						
ŀ	J. Bullding Services	no					- 55	
N	4. Will operation effect other							
4	Jobs and/or personnel?	no						
1	5. Does job require a special	job						
- 1	procedure?	plan						
- 1	b. Has area been properly	-						
- }	cleared for job?	yes		ESTIMATED	EXPOSU	RE	distant.	
- 1	7. Procedure review for HLC	-			Body	Left	Righ	
- 1	personnel?	yes			Penc11		Har	
- 1	S. Procedure review with Crafts		Name		mR	mrem	mre	
- 1	(Maint., E.I, TeT)?	yes				-	25000000	
- 1	9. Fire Hazard?	no				-	-	
	10. Lockout required?	no			4	de estado de la composição de la composi		
- 1	11. Does job equipment meet			,		7		
- 8	safety specs?	yes			-		-	
	12. Voice Announcement	ne						
	Preplan required	yes				55555	.5%	
	14.				-	-	-	
- 8						Lancon and the		
- 9	MONITORING	Rq'd						
	1. Self-monitoring permitted.	.19 w					_	
- 3	2. Monitoring at start of job	-					-	
	by Radiation Control	-					1	
	3. Intermittent monitoring by						_	
- 3	Radiation Control	-		ATTENOR	IZATION	2		
	Hadiation Control	yes	<u> </u>	AUTHOR	IZMITON	.7		
	4. Continuous monitoring by	-	HLC Supv:					
	Radiation Control	1						
,	OUDIEN DEGITES		Rad.Cont.S	supv:				
	3 mK/Kn gen h	will.	Maint. Sur	v:				
	3mx/Kr gent	DANGE	m. C. /	2				
	7		Let Suba:					
	Surveyed by:		Supv:	33300				

Figure 7-3. Maintenance on MSMs [DuPont 1981, p. 80].

Date: 10/31/83		22	700 m	Operation		
Time of Operation: DAV.		Describe op	eration, safe	ety precaut	ions,	and
Contact:		radiation a	nd contamina	tion contro	1 prec	autio
Done by: CONTR.						
Phone: 3 86 8		Title of le	b: Remove P.P.	of - Handley O	Change.	lest Feet
						- Min
PROTECTIVE CLOTHING	Rold	PILE -0	HART METAL	- LABOR	ERS.	
L. Coveralls One (Iwo)	1	17. This	JIB PLAN	IS E.R 3	· Per	AT PON
2. Respirator	1					
3. Breathing Air		2. 601	PIPING, CO	OFE EXAM	P EV	24
4. Cap (Hood)	1	LAND	Remove 5	DWASTE		
5. Shoe Covers	1	12. 140	pu luc	RAG FOI	2 800	INC
6. Gloves	V					120
7. TLD Badge (By)	V	LINE	R tout	AND INT	0,	
3. Self-reading Dosimeter	V	4. Hook-	UP LINER	TO FACE	TATE	
9. Safety Belt '	_			-	14.4	
O. Rubber Boots	-		UAL.			_
1. Lab Coat 2. RT-1 Pers. Rad. Monitor	-	5. Remoi	ELCOURE	ON MS	m Pal	at,
2. KI-1 Pers. Rad. Monitor 3. Neutron Badge	-		PUSH STIC			_
4. FINER RINCI	1					00
4. FINEEL KING!	1	FLOOR	TO FRO	NT of L	NER.	
JOB EVALUATION	Rg'd		u A Tes			-
1. Does job alter ventilation	nq u	6.14814	C F IE	O TOWN		
patterns?	NO	10 F	ACILIMATE	PUTTING 1	HOLON	0
2. Rigging approved?		INTO	CELL SURI	J. SURIN	Der IT	0.00
3. Building Services?	VE:			7 00000	1.501	COLL
4. Will operation effect other jobs	n/m	OFER	mous.			
and/or personnel?	NO					
Does job require a special	1.					
Does job require a special procedure? Jo B RAN gugand.	YES	IN IK	-	- st.		
5. Has area been properly cleared	1.0	in to	ESTIMATED EX	POSURE	Tree Land	
for job?_	YES			Body	Left	Rig
7. Procedure review for HC CRAFT .	let.			Pencil'	Hand	Ha
personnel? Joe Ran	YES!	M	t ma	mR	mrem	mr
3. Procedure review with Crafts	1.1			0		
(Haint., Esi, TST)? Co-st. (reven)	YES				-	
9. Fire Hazard?	NO			.5		
). Lockout required?	NO			10		
 Does job equipment meet safety 	VEJ					
specs?	-			2.3		
2. Yoice Announcement	NIA					1
3. Preplan required HALD 10/19/83	YES				-	
<u> </u>				-		
MONITORING	Rq'd			-		_
. Self-monitoring permitted				Jan 1992		-
. Monitoring at start of job by						2
Radiation Control	1	-				
3. Intermittent monitoring by		and the same of th	AUTHORIZA	TIONS		
Radiation Control	"	ILC				
. Continuous monitoring by		HLC Supv:				
Radiation Control	-	Rad. Cont. S				
	*	CONST				
SURVEY RESULTS		Sup				
		THE SUDVE				
30 mRike & top of Cu	1000	- map				

Figure 7-4. Construction removing MSM covers [DuPont 1983b, p. 161].

potential. Due to similarity of jobs and exposures, NIOSH believes all crafts should be included in a single co-exposure model. The workplace monitoring at SRS varied depending on the magnitude of the exposure potential and associated risk. HP monitoring and personnel protective equipment changed depending on this exposure potential and is quite similar to radiological monitoring conducted today.

Many, but not all, CTWs as shown in ORAUT-RPRT-0083 [ORAUT 2017b] should have some bioassay just from the routine nature of compliance monitoring or from job monitoring of workers. If a worker participated intermittently on jobs in radiological areas, the combination of routine, job-specific, and incident monitoring of coworkers should identify an upper bound of the worker's radiological dose that is favorable to the claimant.

The discussion provided illustrates that all trades workers had a similar potential for exposure and in some instances the exact same potential for exposure as they worked on the same job. As a result, stratifying by type of CTW (i.e., craft) is not considered appropriate in these instances. The combining of all construction trades workers into a single stratum is considered appropriate for all unmonitored construction trades workers.

As stated, workers in the CTW population would perform frequent tasks of generally short duration that could nevertheless present a potential for external and internal radiation exposure. Bingham [1997] provided the following set of workers for the Oak Ridge study:

- Carpenters,
- Ironworkers,
- Electricians,
- Painters,
- Asbestos Workers or Insulators,
- Pipefitters or Steamfitters,
- Cement Masons,
- Laborers,
- Bricklayers,
- Boilermakers,
- Mechanics or Millwrights,
- Operating Engineers or Heavy Equipment Operators,
- Sheet Metal Workers,
- Roofers, and
- Truck Drivers.

For SRS, the Center to Protect Workers' Rights compiled the list in Table 7-1 taken from Bingham [1997]. It identified the same list, although laborers, roofers, and truck drivers were identified by their unions. Truck drivers met the criteria of a CTW at SRS. They frequently hauled radioactive wastes to the tank farms, to the burial grounds, or to the burning pits. Workers with the job title E&I Mechanic went to areas of the site to perform installation, maintenance, and repair of control and measurement equipment; they had a similar exposure profile to that of electricians and mechanics.

Table 7-1 lists the job titles from SRS that should be included in CTW data population. This list includes all the occupations in the list of construction worker trades in ORAUT-OTIB-0052, *Parameters to Consider When Processing Claims for Construction Trade Workers* [ORAUT 2014b]. SRS PRID prefixes and craft code [DuPont 1954] are included.

T 7 4	A 1 1.		'41 11	
1 2 NIA /_1	Construction	trada cratte	With roll ?	and craft codes.
1 abic 1 - 1.	COHSHUCHOH	liaut Giailo	WILLI I OIL C	and Grant Godes.

Craft	Roll and craft code
Boilermaker	Roll 4, craft code 20
Carpenter	Roll 2, 4, craft code 6
Concrete Worker (or cement worker or mason)	Roll 4, craft code 8
Construction Worker	Roll 4
Driver	Roll 2, 4, craft code 10
E&I Mechanic	Roll 2
Electrician	Roll 2, 4, craft code 25
Heavy Equipment Operator	Roll 2, 4, craft code 14
Insulator	Roll 2, 4, craft code 31
Ironworker	Roll 2, 4, craft code 21
Laborer	Roll 2, 4, craft code 5
Mechanic	Roll 2
Millwright	Roll 2, 4, craft code 18
Painter	Roll 2, 4, craft code 33
Pipefitter (or plumber)	Roll 2, 4, craft code 26
Rigger (or Laborer)	Roll 2, 4, craft code 5
Roofer	Roll 2, 4
Sheet metal Worker	Roll 2, 4, craft code 21

7.2.2.2 Worker Classification Methodology

The determination of whether an individual is a CTW is based on the person's PRID prefix and the occupation. The PRID prefix is the primary designator, but the occupation title is used to exclude or include some occupations when the PRID prefix would otherwise erroneously indicate the person is or is not a CTW. The method consists of using the PRID associated with the bioassay data for which a CTW determination is needed, if available, and an occupation title extrapolated from the datasets for which those occupation titles are available. For this co-exposure study, workers were considered CTWs if they had a Roll 4 or Roll 6 or higher PRID prefix, except if their job title was one of the nonCTW job titles in Table 7-2. If no Roll code is available, the person is assumed to be Roll 2 and the designation is made based on the occupation title. This approach is applicable to the DuPont era at SRS. A different classification methodology will be needed for the Westinghouse era.

There are two applications of this methodology:

 <u>Self-contained dataset</u>. A dataset internally containing all the data necessary to make the CTW determination. The datasets that meet this description are the americium and neptunium logbook data. In these cases, the worker's occupation title has been directly obtained from the worker history cards on each bioassay date. The datasets also contain the PRID, which is also verified from the worker history cards. CTW determinations are directly made from this information.

- 2. <u>Dataset without occupation titles and/or PRIDs</u>. The datasets that meet this description are the NOCTS in vivo data, NOCTS in vitro data (other than tritium), and the NOCTS tritium data, which is a separate dataset. The NOCTS in vitro dataset is the source for plutonium, uranium, and strontium plus fission product (FP) bioassay data. The NOCTS in vivo dataset is the source for cesium and part of the neptunium bioassay data. In these cases, the following procedure is followed to make the CTW determination.
 - Create a "master" occupation and PRID lookup table by merging:
 - Americium logbook data,
 - Neptunium logbook data,

Table 7-2. CTW determination job titles.

CTW occupations
Boilermaker
Carpenter
Concrete worker
Construction worker
Driver
E&I Tech
Electrician
Heavy equipment operator
Insulator
Ironworker
Laborer
Maintenance
Mechanic
Painter
Rigger
Sheet metal worker
Welder
vveider

١	jod titles.
	nonCTW occupations
	Administrative Assistant
	Assistant
	Cafeteria
	Clerical
	Crane Process Operator
	Engineer
	Escort
	HP
	Human Resources
	Instructor
	Laundry
	Layout
	Machinist
	Manager
	Pilot
	QA
	Reactor Operator
	Security
	Specialist
	Supervisor
	<u> </u>

- NOCTS whole body count (WBC) data, and
- ORAUT-RPRT-0058 [ORAUT 2012a] in vitro data.
- Determine individual's name from NOCTS based on the claim number for a given bioassay sample (tritium dataset only).
- For each bioassay result in the dataset (NOCTS in vitro or tritium data), find the bioassay date preceding or closest to it within 5 years for that person in the master lookup table. Base the lookup on the PRID if available or the person's name otherwise.
- If a preceding or closest bioassay date within 5 years is found:
 - Assign the occupation title (and PRID if needed) from the bioassay date in the master lookup table to the bioassay result.
- If no preceding or closest bioassay data within 5 years is found (person not listed in the master lookup table):

- Manually look up the occupation title and PRID (if needed) on the bioassay date from the worker history cards.
- Make the CTW determination based on the PRID and assigned occupation title.

For this revision, the mixed fission product (MFP) statistical analysis was based on the source NOCTS data rather than the ORAUT-RPRT-0058, *A Comparison of Mixed Fission and Activation Product Coworker Models at the Savannah River Site*, in vitro data created specifically for the MFP stratification report [ORAUT 2012a]. This is due to changes in how MFPs were evaluated. Therefore, the only future use of this dataset is via its inclusion in the master lookup table described above. Similarly, the neptunium data for the neptunium stratification report [ORAUT 2012b] have no future use.

7.2.2.3 Worker Classification Quality Assurance

As discussed above, a Master Occupation Table was compiled from four data sources: americium logbook data, neptunium logbook data, NOCTS WBC data, and ORAUT-RPRT-0058 [ORAUT 2012a] in vitro data. The data entry accuracy for each of these sources was evaluated in accordance with ORAUT-RPRT-0078 [ORAUT 2016b]; the fields containing the PRID and the numerical sample results were evaluated with a maximum 1% allowable error rate. All other fields from the hardcopy records were evaluated with a maximum 5% allowable error rate. Each dataset passed the QA check, the results of which are summarized in Table 7-3. The details of the results of the evaluation are contained in Attachment A.

Table 7-3. Master Occupation Table data source QA check results.^a

	1% check results	5% check results
Data source	(95% confidence interval)	(95% confidence interval)
Americium logbook data (1963–1989)	0.59% (0.39%-0.86%)	0.69% (0.25%-1.49%)
Neptunium logbook data (1961–1969)	0.67% (0.46%–0.95%)	1.53% (0.83%–2.59%)
NOCTS WBC data (1966–1990)	0.62% (0.41%-0.89%)	2.17% (1.31%–3.37%)
ORAUT-RPRT-0058 MFPG in vitro data (1955–1988)	0.43% (0.27%–0.67%)	0.12% (0.0042%–0.65%)

a. MFPG = mixed fission product-gamma.

In addition, the accuracy of the CTW determinations obtained using the Master Occupation Table were checked for the NOCTS in vivo bioassay dataset, the NOCTS in vitro bioassay dataset, the NOCTS tritium bioassay dataset, the americium logbook dataset, and the neptunium logbook bioassay dataset. The results are summarized in Table 7-4. The details of the results of the evaluation are contained in Attachment A.

Table 7-4. CTW determination QA check results.

	Check results
Data source	(95% confidence interval)
NOCTS in vivo data (1966–1990)	0.83% (0.34%–1.68%)
NOCTS in vitro data (1953–1990)	1.15% (0.55%–2.09%)
NOCTS tritium data (1954–1990)	0.69% (0.25%-1.49%)
Neptunium logbook data (1961–1969)	0.28% (0.06%-0.94%)
Americium logbook data (1963–1989)	0.47% (0.14%–1.19%)

7.2.3 Evaluation of Missed Dose

For individual dose reconstructions, missed dose is assigned based on results that are less than the minimum detectable amount (MDA) or reporting level of the results and fitted dose is typically separately assigned based on results above this level. For internal dose co-exposure studies, missed

and fitted dose are addressed simultaneously by the use of all bioassay data in the statistical analysis regardless of whether an entry is above or below the MDA. The actual uncensored <MDA results are used when available, and the techniques used to fit distributions to censored datasets in ORAUT-RPRT-0096 [ORAUT 2021] are used otherwise. The results of the statistical analysis are used to determine intake rates that include any potential missed dose, applying the general guidelines in Section 3.4.2 of ORAUT-OTIB-0060, *Internal Dose Reconstruction* [ORAUT 2018], and treating all of the statistical analysis results as positive values.

7.3 RADIONUCLIDE ANALYSES

7.3.1 Americium

7.3.1.1 Data Adequacy

7.3.1.1.1 Personnel Monitoring

DuPont specified bioassay operating guides, sampling frequencies, instructions for requesting and collecting urine samples, and related administrative controls in the *Bioassay Control* procedures. The earliest available version of the procedure is Revision 2 dated January 2, 1968 [DuPont 1968a]. It indicates an americium sample size of 500 mL was used with a "positive result" level of 1 dpm/250 mL and a resample level of 5 dpm/250 mL. The procedure does not specify americium sampling frequencies. The sample request process indicates that 24-hour composite samples required approval by an HP Senior Supervisor or above, indicating that routine samples were probably not 24-hour samples.

In Revision 3 of the *Bioassay Control* procedure [DuPont 1970], the positive level for total activity from trivalent actinides (americium, curium, and californium) was noted as 0.3 dpm/1.5L and the sample positive level was used for the resample level. The sample size was reduced to 250 mL. An intake was considered confirmed if the initial bioassay result was >1 dpm/1.5L and a resample result was >0.3 dpm/1.5L. The sampling frequencies for various personnel are provided in Attachment B. The process for requesting samples was similar to the previous process, but approval of an HP Senior Supervisor or above was no longer required for 24-hour samples. Additional instructions were provided for collecting samples in the event of suspected inhalations, ingestions, injections, skin contaminations, or whenever airborne contamination exceeded control guides. In 1971, additional guidance for Construction Division personnel was added but with no specific guidance for trivalent actinides. "Other nuclides," which would have included the trivalent actinides, were monitored as specified by area HP in the construction Job Plans [DuPont 1971a].

The periodicity of routine urine sampling changed throughout the 1970s for various work locations and as a result of the introduction of in vivo counting [DuPont 1971a, 1971b, 1976]. The sampling frequencies for various personnel at various times are provided in Attachment B.

The 1990 Internal Dosimetry Technical Basis Manual monitoring program for trivalent actinides specified quarterly urine bioassay, an annual chest count, semiannual fecal bioassay, and personal air sampling [WSRC 1990]. If monitored by workgroup, the urine bioassay decreased to annually unless a member of the workgroup had a confirmed intake. Trivalent actinide monitoring was required for the F-Area New Special Recovery facility.

7.3.1.1.2 Applicability to Unmonitored Workers

Records of in vitro bioassay for trivalent actinides show urinalysis data back to about 1963. As discussed above in the description of the sample collection process, there was guidance for whom to sample by 1970, which is consistent with a substantial increase in the number of collected samples in

1969. With additional experience and history, the number of collected samples, both by workers in the monitoring program and the frequency of samples, decreased during the 1970s and 1980s as can be seen in Table 7-5. (Additional discussion of other results in Table 7-5 is provided in Section 7.3.1.2.1.) The sampling frequency decreased during this same period as detailed in Tables B-2 through B-8, resulting in some of the decrease in the total number of samples per year. The inference is that the increased sampling during the early 1970s provided the basis for selection of those worker groups, work locations, and job classifications for which trivalent actinide monitoring was needed and for an appropriate sampling frequency. The transition to workgroup monitoring in the 1980s also resulted in a reduction in the number of samples collected.

Table 7-5. Americium logbook data summary and completeness estimate.

	Monthly report # of	Logbook # of	% of summary
Year	Am samples	Am samples	samples in logbook
1963	11	19	173
1964	72	72	100
1965	173	213	123
1966	295	284	96
1967	253	303	120
1968	480	771	161
1969	1,194	930	78
1970	2,730	2,687	98
1971	2,016	2,100	104
1972	1,820	1,837	101
1973	1,332	1,368	103
1974	1,274	1,360	107
1975	891	879	99
1976	761	821	108
1977	593	573	97
1978	446	497	111
1979	664	646	97
1980	387	276	71
1981	344	365	106
1982	466	410	88
1983	413	363	88
1984	334	398	119
1985	244	420	172
1986	540	536	99
1987	420	384	91

DuPont workers, which included Roll 2 CTWs, were part of the routine monitoring program in the bioassay control procedures detailed in Section 7.3.1.1.1. The monitoring program was based on work location, and the radionuclides for which monitoring was performed and bioassay frequency was chosen were based on the exposure potential of each facility. Construction Division workers were not necessarily included in this routine monitoring program. The monitoring program for the Construction Division was different in that it was job specific. Area HPs specified the bioassay monitoring for each specific Job Plan. Those nonCTWs in areas with the potential for exposure (a decision made during Job Plan review) were thus included in the monitoring program.

Both of these types of monitoring programs can be considered variations on routine representative sampling. For workers normally present in an area (i.e., nonCTWs and Roll 2 CTWs), the monitoring is specified on an annual basis in the bioassay control procedures. For workers intermittently present in an area (i.e., some CTWs), the monitoring was based on the Job Plan. For the duration of the Job Plan and the duration of the exposure potential, the required monitoring was specified. The key point

is that in both instances monitoring was based on exposure potential rather than being driven by incidents. In either case, if an incident did occur, incident-driven sampling would have been performed.

SRS also used workgroup monitoring as a representative sampling method to confirm the lack of intakes. The bioassay frequency of individual workers was reduced while still monitoring the entire group. Effectively, it was assumed that a worker's intake potential could be based on the bioassay data for coworkers, very similar to this co-exposure study. If coworker bioassay data were negative, it was assumed that there was no intake for all the workers in the workgroup. If an intake (positive bioassay result) was confirmed, bioassay frequencies for the entire workgroup increased. Indications are that this practice began in the 1980s, which is consistent with the observed decrease in the number of bioassay records available in NOCTS.

7.3.1.1.3 Bioassay Analysis Techniques

Records showing urinalysis for trivalent actinides date back at least to the mid-1960s, using liquid ion exchange: triisooctylamine (TIOA) followed by bis(2-ethylhexyl) phosphoric acid (HDEHP), deposition on planchets, and alpha counting. A 10% thenoyl trifluoroacetone in toluene extraction was used to remove solids and reduce alpha self-absorption in the samples. Tracer recoveries were greater than 90% [Butler 1964]. The early reporting levels varied from 1 to 3 dpm/1.5 L. In 1964, solid-state surface barrier detectors replaced the previous counting method for using alpha track counting [Butler and Splichal 1965]. Samples were usually analyzed in batches of 20, including spikes and blanks, with one blank and two to four spikes in each batch. Multiple counts of a sample (assumed to be separate aliquots) were not common until 1969, when the logbook records also start to record "dpm/disc" values [DuPont 1963–1970].

In about 1970 an extraction method using the bidentate dibutyl-*N*,*N*-diethylcarbamylphosphonate (DDCP) was developed that allowed sequential separation of plutonium, neptunium, and uranium with TIOA, followed by extraction of thorium, americium, curium, berkelium, californium, and einsteinium with bidentate. (It would also have captured fermium.) The extraction efficiency for americium was 89 ±8% [Butler and Hall 1970]. The sensitivity of that method was reported to be 0.02 ±0.01 dpm/250 mL or 0.12 dpm/1.5 L for a 24-hour count. The article states that alpha spectrometry can be used to identify individual radionuclides, but the sensitivity appeared to be based on a gross alpha count [Butler and Hall 1970, pp. 3, 4]. Samples were analyzed in batches of 20, including spikes and blanks, with one blank and two spikes in each batch [DuPont 1970–1973]. In 1971, the reporting level using gross alpha counting on a solid-state detector was listed as 0.3 dpm/1.5 L [Taylor 2000, p. 4]. The Butler and Hall article was a report on research and reported the limits obtainable under research conditions [Butler and Hall 1970]. The 0.3 dpm/1.5L reporting level provided by Taylor is assumed to be the actual reporting level in practice under production conditions.

In 1990, a change in radiochemical processing (ion exchange resin) resulted in an MDA of 0.15 dpm/L [WSRC 2001, p. 182; Taylor et al. 1995, p.79]. Alpha spectrometry has been used since 1992 for special samples and since 1995 for routine samples with MDAs of 0.064 dpm/L for ²⁴¹Am and 0.047 dpm/L for ²⁴⁴Cm and ²⁵²Cf [WSRC 2001, p. 58]. A review of the recorded data show that the transition from gross alpha to alpha spectrometry was not clean, with a few routine samples having alpha spectrometry in 1993 and 1994. The gross alpha results are listed as "AmCmCf" in the database.

7.3.1.1.4 Paired Measurements Sample Variance

The americium data from the logbooks contain multiple counts for each sample. Commonly making multiple counts began in 1969 and tapered off in the late 1980s. A review of the coefficient of variation

of the results was performed to identify results with significant variation in the individual counts. Those with significant variation were investigated further to attempt to determine the reason for this variation. This evaluation is contained in Attachment C. The conclusion of the evaluation is that the occurrence of samples with significant intra-count variation is limited and that there is no systematic issue with the analytical procedure used for americium.

7.3.1.2 Data Validation

7.3.1.2.1 <u>Logbook Data Completeness</u>

For the period before availability of the HPRED data (before 1991), data from analytical laboratory logbooks was used [DuPont 1961–1969, 1963–1970, 1969, 1969–1973, 1970–1973, 1973–1978, 1973–1979, 1978–1983, 1979–1980, 1980–1981a,b, 1981–1986, 1986–1989]. The quantity of data from the logbooks was compared to annual bioassay summaries [DuPont 1965–1968, 1968b, 1969–1981, 1973–1986, 1988] with the number of samples in the logbooks shown as a percentage of the number given in the bioassay summaries. The results of this comparison are shown in Table 7-5. The ability to compare these numbers directly is limited by the fact that the logbooks record the date of sample collection while the summaries indicate the number of analyzed samples and include fecal samples for 1969 and after. On some occasions, samples were not analyzed until months after collection. Before 1969, the number of recorded samples in the logbooks exceeds the number in the summaries. Beginning in 1969, on average, about 90% of the number of samples in the summaries are recorded in the logbooks, and fecal samples can be assumed to account for at least part of the difference.

7.3.1.2.2 Data Quality

The data entry effort was evaluated in accordance with ORAUT-RPRT-0078 [ORAUT 2016b]; the fields with the numerical sample results were evaluated with a maximum 1% allowable error rate. The QA check resulted in a point estimate error rate of 0.52% with a 95% confidence interval of 0.33% to 0.78%. All fields were evaluated with a maximum 5% allowable error rate. The QA check resulted in a point estimate error rate of 0.23% with a 95% confidence interval of 0.03% to 0.82%. Therefore, the dataset passed the QA check. The details of the results of the evaluation are contained in Attachment A.

7.3.1.2.3 Data Interpretation

A single americium urine sample was commonly counted multiple times, usually twice, but as many as eight times was noted. The data in the logbooks consisted of one or more count rate results for each urine sample in units of dpm per disc, depending on how many times a sample was counted (this information was not used) and count-specific results in units of net dpm per unit volume or sample (this information was used). Further, a reported value for each sample, also in units of dpm per unit volume or sample for each count of a sample was generally provided. The result in dpm per unit volume or sample for each count of a sample was generally recorded as an uncensored value (i.e., the calculated result was recorded regardless of its value). In contrast, the "reported" values were generally censored (i.e., results less than some level, typically the detection or reporting limit, were reported as a less-than result). Some dpm per unit volume or sample data that were less than zero were reported as zero.

On some occasions, nonstandard sample aliquots were used. Often this was due to a small total sample volume or expected high concentrations. The count-specific results were adjusted to correct for the nonstandard volume. The details of this correction methodology are contained in the statistical analysis instructions in Attachment D.

Not all sample records included all this information, and in some instances, the count-specific results were censored. If count-specific results were available, the valid results were averaged by the Oak Ridge Associated Universities (ORAU) Team to determine the sample result. This value was generally uncensored. If count-specific results were not available, the reported values were used, many of which were censored.

7.3.1.2.4 Data Exclusion

Samples marked as LIP (lost in process), those marked DTPA (diethylene triamine pentaacetic acid) to indicate chelation, and those that lacked sufficient identifying information [e.g., sample date or worker payroll identification (ID) number] were excluded. Individuals with intakes of actinides are sometimes treated by chelation to accelerate the excretion of the radionuclides. Bioassay data influenced by chelation treatment are not suitable for use in an internal dose co-exposure study due to the altered biokinetics during chelation treatment. A listing of individuals who received chelation at SRS was compiled from Site Research Database (SRDB) chelation records from the Radiation Emergency Assistance Center/Training Site (REAC/TS) (see Table B-1). Bioassay data for samples collected within 100 days after receiving chelation treatment were not used.

Examination of the data revealed occasions during which individuals were involved in incidents that resulted in large intakes and excretions. Post-incident results for [redacted] individuals were excluded due to an [redacted]. These incidents and intakes were characterized by an extremely high number of bioassay results, many of which were orders of magnitude higher than the bioassay data for other individuals. They were considered unrepresentative of the potential exposure to an unmonitored worker and were removed. The incidents were:

- [Redacted].
- [Redacted].
- [Redacted].
- [Redacted].

The above discussion is a general summary of the method. The detailed statistical analysis instructions are in Attachment D.

7.3.1.3 Statistical Analysis

Statistical analysis of the americium bioassay data were performed in accordance with the current version of ORAUT-RPRT-0053 [ORAUT 2014a] using the time-weighted one person—one statistic (TWOPOS) method and the multiple imputation method from ORAUT-RPRT-0096 [ORAUT 2021]. The data were analyzed on an annual basis except for 1963 to 1964 and 1988 to 1989 for the nonCTW data and for 1966 to 1967, 1983 to 1984, 1985 to 1986, and 1987 to 1989 for the CTW data. These years were merged due to the small number of workers with bioassay data available for them. Table 7-6 provides the results of the statistical analysis. Box and whisker plots of the TWOPOS data are shown in Figures 7-5 and 7-6. The box and whisker plots are overlaid with the cumulative excretion results predicted by the intake modeling as discussed further below. The supporting data for these figures and tables are contained in ORAUT [2022] in the \statistics\ subfolder. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990. The top line is the predicted excretion 84th percentile for all intakes. The bottom line is the predicted excretion GM for all intakes.

Table 7-6. Calculated 50th- and 84th-percentile urinary excretion rates of americium based on a lognormal fit to the TWOPOS data, 1963 to 1989 (dpm/d).^a

	nonCTW	nonCTW		nonCTW	CTW	CTW		
	50th	84th	nonCTW	# of	50th	84th	CTW	CTW # of
Year ^b	percentile	percentile	GSD ^c	individuals	percentile	percentile	GSD	individuals
1963	0.299	0.910	3.04	41	Not	Not	Not	Not
1964					applicable	applicable	applicable	applicable
1965	0.258	0.946	3.67	123	арріїосьіс	арріюшью	арріїодьіс	арріюавіс
1966	0.444	1.297	2.92	144	0.440	1.463	3.32	50
1967	0.394	1.175	2.98	182				
1968	0.220	0.629	2.85	277	0.241	0.671	2.79	86
1969	0.169	0.461	2.72	277	0.185	0.546	2.95	94
1970	0.136	0.290	2.13	447	0.127	0.256	2.01	120
1971	0.134	0.236	1.76	530	0.133	0.241	1.81	100
1972	0.078	0.176	2.25	538	0.074	0.150	2.02	106
1973	0.018	0.076	4.09	520	0.020	0.077	3.80	106
1974	0.035	0.098	2.79	367	0.036	0.099	2.75	84
1975	0.028	0.092	3.31	361	0.028	0.097	3.52	94
1976	0.031	0.093	2.99	359	0.030	0.078	2.65	89
1977	0.032	0.092	2.84	316	0.033	0.082	2.51	68
1978	0.057	0.147	2.57	163	0.054	0.132	2.46	51
1979	0.043	0.111	2.56	248	0.044	0.111	2.55	59
1980	0.041	0.106	2.56	182	0.039	0.095	2.42	41
1981	0.019	0.073	3.80	245	0.029	0.131	4.49	40
1982	0.023	0.158	6.91	323	0.028	0.205	7.27	45
1983	0.125	0.197	1.57	277	0.120	0.222	1.85	63
1984	0.043	0.114	2.65	256	0.120	0.222	1.00	03
1985	0.038	0.081	2.11	235	0.053	0.111	2.00	34
1986	0.052	0.139	2.68	243	0.053	0.111	2.09	34
1987	0.114	0.151	1.32	283				
1988 1989	0.108	0.186	1.73	282	0.105	0.157	1.50	26

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

b. Where multiple years are noted for a single line of excretion rates, the data for these years were combined for the statistical analysis.

c. GSD = geometric standard deviation.

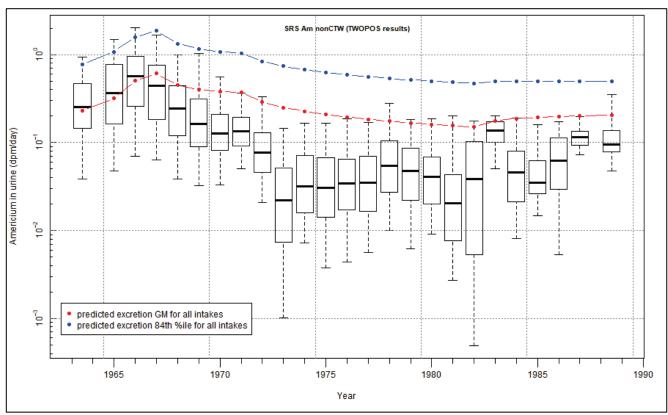


Figure 7-5. Americium nonCTW TWOPOS data box and whisker plot.

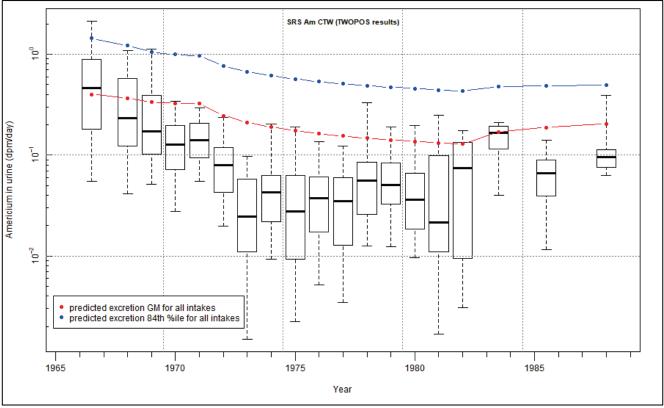


Figure 7-6. Americium CTW TWOPOS data box and whisker plot. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.1.4 Intake Modeling

Each result that was used in the intake calculations was assumed to have a normal distribution. A uniform absolute error of 1 was applied to all results, thereby assigning the same weight to each result. The IMBA program requires in vitro bioassay results to be in units of activity per day; therefore, all urinalysis results were normalized as needed to 24-hour samples using 1,500 mL (the volume of urine assumed by SRS to be excreted in a 24-hour period).

Because of the nature of work at SRS, intakes could have been chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and to occur through inhalation with a default breathing rate of 1.2 m³/hr and a 5-µm activity median aerodynamic diameter particle size distribution.

IMBA was used to fit the bioassay results to a series of chronic inhalation intakes. The intake assumptions were based on observed patterns in the bioassay data. Periods with constant chronic intake rates were chosen by the selection of periods in which the bioassay results were similar, applying a rule of thumb that the results be within about a factor of 2. A new chronic intake period was started if the data indicated a significant sustained change in the bioassay results. By this method, the years from 1963 through 1989 were divided into multiple chronic intake periods.

Because americium has a very long half-life and the material is retained in the body for long periods, urinary excretion results are not independent. For example, an intake in the 1950s could contribute to excretion in the 1980s and later. To avoid potential underestimation of intakes for people who worked for relatively short periods, each intake period was fit independently using only the bioassay results from that period. For a particular individual, this fitting method will result in a best estimate of dose if the person worked in only one period and a potential overestimate if an individual worked in multiple periods. Only the results in the intake period were selected for use in the fitting of each period. Excluded results are shown as an "X" in the figures in Attachment E; included results are shown as dots. The results of the statistical analysis that was used to calculate the intakes are provided for americium in Table 7-6.

The solid lines in Figures E-1 to E-18 in Attachment E show the individual fits to the 50th- and 84th-percentile excretion rates for type M materials for nonCTWs and CTWs. Figures E-19 to E-22 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type M intakes for nonCTWs and CTWs. Tables E-1 and E-2 list the 50th- and 84th-percentile intake rates with the associated geometric standard deviations (GSDs) from the americium urinalysis for nonCTWs and CTWs, respectively. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Figures 7-5 and 7-6 overlay the cumulative urinary excretion rates (lines) predicted by the intake modeling on the box and whisker plots of the TWOPOS data. As can be seen, the predicted geometric means (GMs) of the excretion rates are favorable to claimants in comparison with the GMs of the TWOPOS data.

7.3.2 <u>Tritium</u>

7.3.2.1 Data Adequacy

7.3.2.1.1 Personnel Monitoring

DuPont specified bioassay operating guides, sampling frequencies, instructions for requesting and collecting urine samples, and related administrative controls in the *Bioassay Control* procedures. The earliest available version of the *Bioassay Control* procedure is Revision 2 [DuPont 1968a], which

Document No. ORAUT-TKBS-0003-7

Effective Date: 03/05/2024

indicates a tritium sample size of one voiding with a "positive level" of 1 µCi/L and a resample level of 5 μCi/L. The procedure does not specify required tritium sampling frequencies. Revision 3 [DuPont 1970] contains the same information. However, tritium sampling frequencies were given in *Radiation* & Contamination Control, DPSOL 100-9707 for 1964, 1965, and 1966. Workers with the highest potential for intakes of ³H, reactor outage process workers, were asked to leave three samples per week. Other workers with a potential for intakes were required to leave one 50-mL urine sample each week [DuPont 1959-1971, pp. 417, 458, 920].

In Revision 5 [DuPont 1971b], there was no positive level and the confirmation level was still 5 μCi/L. Most 221-H and H-Area outside facilities workers submitted bioassay samples for tritium analysis twice a year. Workers in the 100 Areas, 105 Building, 232-H, 234-H, 237-H, 238-H, 241-H, and 244-H submitted bioassay samples as specified in "local procedures." For the Construction Division, tritium sampling was specified in the Construction Job Plans or in DPSOP 40-1. In Revisions 7 and 8, sampling frequency was still specified in local procedures [DuPont 1959–1971, pp. 458–460 p. 355; 1976; no date b].

Bioassay control remained unchanged from 1978 through 1985 [DuPont 1985b, p. 273], and sampling frequency was still controlled by local procedures and construction Job Plans. The 1990 Internal Dosimetry Technical Basis Manual monitoring program for tritium specified monthly urine bioassay [WSRC 1990, p. 235]. In the available tritium dataset, there are over 200,000 bioassay results from individuals who submitted more than one sample for tritium analysis. Almost 30% of these samples were collected either daily or weekly, and over 60% were collected within 7 days. This is illustrated in Figure 7-7.

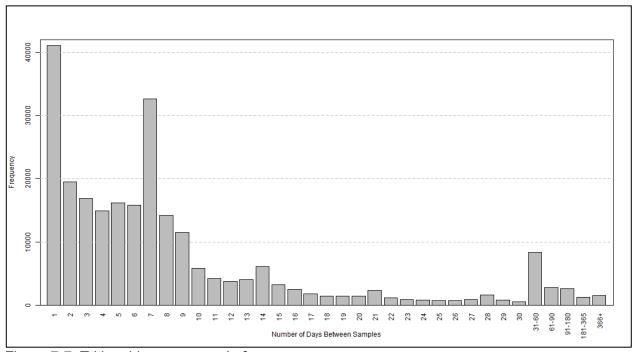


Figure 7-7. Tritium bioassay sample frequency.

7.3.2.1.2 Applicability to Unmonitored Workers

Records of in vitro bioassay for tritium show urinalysis data back to about 1954. As discussed above in the description of the sample collection process, there was guidance for whom to sample by 1968. Tritium was addressed differently from most other radionuclides in that sampling was more frequent and was controlled at the local level rather than in plantwide procedures. By 1976, overall guidance of whom to monitor was in place, but local control still determined precise sampling frequencies. By 1990, facilities with the potential for tritium exposure were using monthly sampling frequencies.

Available NOCTS tritium data on the number of monitored individuals trends the same for CTWs and nonCTWs with a peak in the late 1950s and early 1960s after a gradual decline through 1989 with intermittent increases.

DuPont workers, which included Roll 2 CTWs, were part of the routine monitoring program. The monitoring program was based on work location, and the radionuclides for which monitoring was performed and bioassay frequency were chosen based on the exposure potential in each facility. Construction Division workers were not necessarily included in this routine monitoring program. The monitoring program for the Construction Division was different in that it was job specific. Area HPs specified the bioassay monitoring to be performed for each specific Job Plan. Those nonCTWs in areas with the potential for exposure, a decision made during Job Plan review, were thus included in the monitoring program.

Both of these types of monitoring programs can be considered to be variations in routine representative sampling. For workers normally present in an area (i.e., nonCTWs and Roll 2 CTWs), the monitoring was specified on an annual basis in the bioassay control procedures. For workers intermittently present in an area (i.e., some CTWs), the monitoring was based on the Job Plan. For the duration of the Job Plan and the duration of the exposure potential, the required monitoring was specified. The key point is that in both instances monitoring was based on exposure potential rather than being driven by incidents. In either case, if an incident did occur, incident-driven sampling would have been performed.

SRS also used workgroup monitoring as a representative sampling method to confirm the lack of intakes. The bioassay frequency of individual workers was reduced, but the entire group was still monitored. Effectively, it was assumed that a worker's intake potential could be based on the bioassay data for coworkers, very similar to this co-exposure study. If coworker bioassay data were negative, it was assumed that there was no intake for all the workers in the workgroup. If an intake (positive bioassay result) was confirmed, bioassay frequencies for the entire workgroup increased. Indications are that this practice began in the 1980s, which is consistent with the observed decrease in the number of bioassay records available in NOCTS.

7.3.2.1.3 Bioassay Analysis Techniques

From startup until 1958, tritiated water vapor (HTO) in urine was analyzed by passing hydrogen evolved from the urine sample through an ionization chamber; the reported MDA for this method was 1 μ Ci/L. In 1958, liquid scintillation counting was initiated and remains in use. The reporting level remained at the value of 1 μ Ci/L until approximately February 1981 when it was reduced to 0.5 μ Ci/L. Based on review of bioassay results, the switch was not clean, and some samples dated December 1980 and January 1981 were reported as <0.5 μ Ci/L, while some samples dated after February 1981 were reported as <1 μ Ci/L.

The reporting level was reduced again to $0.1~\mu$ Ci/L in about January 1986. (Again, the date is not certain, and either value was recorded for a few months before and after.) During the 1980s, although the reporting level of $0.5~\mu$ Ci/L was generally used, some results below $0.5~\mu$ Ci/L was generally used, some results below $0.5~\mu$ Ci/L was probably well below the reporting level, and these results below the reporting level should be considered as real. Quality control was ensured by daily, weekly, monthly, and quarterly checks of the bioassay measurement process specified in the DPSOL 47-268 procedure [WSRC 1990].

A History of Personnel Radiation Dosimetry at the Savannah River Site [Taylor et al. 1995] reports that the MDA consistently improved to the current level of 20,000 pCi/L (or 0.02 μ Ci/L). This MDA value was stated in the 1990 technical basis manual, so it was applicable at least that far back [WSRC 1990, p. 396]. It should be noted that for current analyses, tritium results of 0.05 μ Ci/L or less are reported as "<0.1 μ Ci L-1," and results between 0.05 μ Ci/L and 0.1 μ Ci/L are reported as "0.1 μ Ci L-1." Results greater than 0.1 μ Ci/L are reported as measured (to one significant figure) [WSRC 2001, p. 181].

Tritium analyses are listed as "T" on the employee bioassay cards. Tritium might also be listed as "P-10," especially in the 1950s. Tritium results in the 1990s were listed on the same summary form as external dose monitoring results. They are referred to as sample results with dates and analysis results, but the word "tritium" or any other radionuclide identifier is not mentioned directly.

For tritium results, the denominator used for reporting purposes has always been per liter of urine. (The denominator of 1.5 L was never used for tritium as it was for other radionuclides.)

7.3.2.2 Data Validation

Tritium data are from NOCTS bioassay data as discussed in Section 7.2. The data entry effort was evaluated in accordance with ORAUT-RPRT-0078 [ORAUT 2016b]. The numerical sample result fields were evaluated with a maximum 1% allowable error rate. The QA check resulted in a point estimate error rate of 0.32% with a 95% confidence interval of 0.18% to 0.53%. All fields were evaluated with a maximum 5% allowable error rate. The QA check resulted in a point estimate error rate of 0.23% with a 95% confidence interval of 0.03% to 0.82%. Therefore, the dataset passed the QA check. The details of the results of the evaluation are contained in Attachment A.

7.3.2.3 Intake Modeling and Statistical Analysis

Tritium was evaluated differently from the other radionuclides in this co-exposure study. For other radionuclides, intake rates were determined. For tritium, individual doses were determined and were statistically evaluated. This is akin to the external dosimetry analysis in external dose co-exposure studies. The protocol in *Technical Information Bulletin: Tritium Calculated and Missed Dose Estimates* [ORAUT 2004b] was used to calculate the dose for each individual with the following rules concerning the elapsed time between consecutive samples:

- If there was a single urine sample in a calendar year and it was a less-than result (less than the MDA or reporting level), that result was excluded from the analysis because it was assumed not to be part of routine monitoring.
- Samples on the same date were ordered from lowest to highest result.
- All dose was assigned as if it occurred on the bioassay date.

The doses for a period were then plotted on a lognormal probability plot and the typical parameters (GM and GSD) were determined from a linear regression. Individuals who received less than 0.001 rem at three significant digits (i.e., less than 0.0005 rem) were excluded from the statistical analysis. Doses for 1954 to 1990 were calculated from the NOCTS dataset, which is considered a random sample of the complete dataset [ORAUT 2016a]. Table 7-7 lists the tritium doses and GSDs to be used for each year of potential tritium exposure for CTWs and nonCTWs. Box and whisker plots of the individual calculated doses are shown in Figures 7-8 and 7-9 for nonCTWs and CTWs, respectively. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990. The top line is the 84th percentile from lognormal fit. The bottom line is the GM from lognormal fit.

Table 7-7. Tritium annual doses (rem) and GSDs.a

	nonCTW	nonCTW	nonCTW	CTW	CTW	CTW
Year	# of individuals	50th percentile	GSD	# of individuals	50th percentile	GSD
1954	89	0.012	1.87	33	0.012	1.93
1955	103	0.013	2.10	57	0.015	2.18
1956	83	0.019	2.67	53	0.016	2.52
1957	166	0.025	2.75	114	0.025	2.57
1958	243	0.035	2.45	157	0.031	2.35
1959	219	0.034	3.02	112	0.038	2.77
1960	231	0.046	3.18	151	0.042	3.06
1961	227	0.050	2.93	142	0.039	3.36
1962	247	0.051	2.81	186	0.041	2.80
1963	239	0.048	2.57	186	0.040	2.73
1964	218	0.060	3.01	158	0.054	2.83
1965	188	0.055	3.37	113	0.043	2.87
1966	182	0.046	2.86	97	0.031	3.12
1967	174	0.049	2.45	79	0.034	2.99
1968	162	0.051	2.75	91	0.030	2.97
1969	160	0.052	2.42	75	0.031	3.24
1970	156	0.042	2.62	68	0.023	3.49
1971	163	0.051	2.29	63	0.028	3.32
1972	214	0.047	2.82	80	0.033	3.33
1973	227	0.045	2.76	83	0.027	3.50
1974	205	0.048	2.64	74	0.031	3.33
1975	188	0.048	2.68	69	0.032	2.97
1976	176	0.047	2.68	69	0.030	3.26
1977	168	0.053	2.39	78	0.026	3.37
1978	170	0.048	2.45	63	0.028	2.97
1979	173	0.047	2.54	59	0.029	2.76
1980	162	0.049	2.20	68	0.024	2.81
1981	166	0.031	2.38	98	0.016	2.74
1982	188	0.027	2.38	99	0.015	2.72
1983	189	0.022	2.40	104	0.016	2.37
1984	183	0.023	2.47	93	0.015	2.75
1985	150	0.025	2.18	63	0.016	2.45
1986	144	0.008	3.32	66	0.006	3.17
1987	132	0.008	3.08	57	0.007	3.12
1988	117	0.008	2.71	47	0.006	3.52
1989	138	0.006	2.79	70	0.004	3.07
1990	136	0.006	2.78	94	0.006	2.57

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

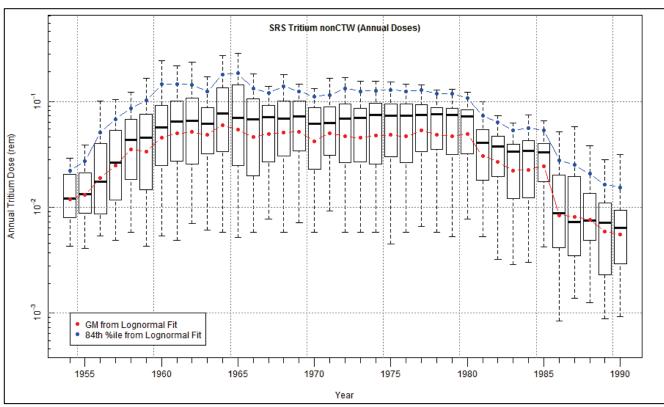


Figure 7-8. Tritium nonCTW individual dose data box and whisker plot.

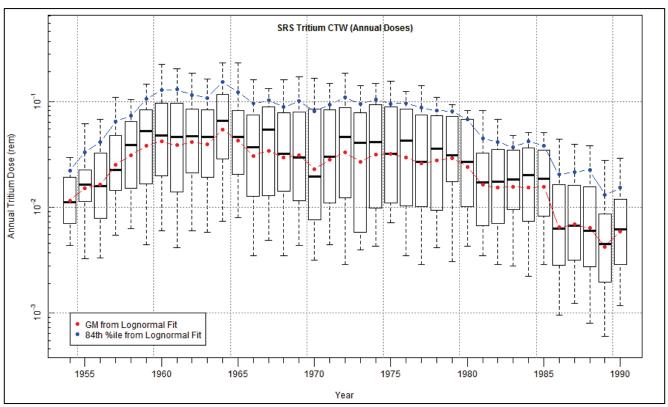


Figure 7-9. Tritium CTW individual dose data box and whisker plot. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.3 Plutonium

7.3.3.1 Data Adequacy

7.3.3.1.1 Personnel Monitoring

DuPont specified bioassay operating guides, sampling frequencies, instructions for requesting and collecting urine samples, and related administrative controls in the *Bioassay Control* procedures. The earliest available version of the procedure is Revision 2 dated January 2, 1968 [DuPont 1968a]. It indicates a plutonium sample size of 250 mL was used with a positive result level of 0.1 dpm/1.5L and a resample level of 0.5 dpm/1.5L. The plutonium sampling frequencies are given in Table B-2 for various job categories and work locations. The sample request process indicates that 24-hour composite samples required approval by an HP Senior Supervisor or above, indicating that routine samples were probably not 24-hour samples.

In Revision 3 of the *Bioassay Control* procedure in 1970 [DuPont 1970], the positive level for plutonium was noted as 0.1 dpm/1.5L and the positive level was used for the resample level. An intake was considered confirmed if the initial bioassay result was >0.5 dpm/1.5L and a resample was >0.1 dpm/1.5L. The sampling frequencies for various personnel are provided in Attachment B. The process for requesting samples was similar to the previous process, but HP Senior Supervisor or above approval was no longer required for 24-hour samples. Additional instructions are provided for collecting samples in the event of suspected inhalations, ingestions, injections, skin contaminations, or whenever airborne contamination exceeded control guides. In 1971, additional guidance for Construction Division personnel was added that specified that Construction Division personnel were sampled triennially and at termination.

The frequency of routine urine sampling changed throughout the 1970s for various work locations, and also as a result of the introduction of in vivo counting [DuPont 1971a, 1971b, 1976]. The sampling frequencies for various personnel at various times are provided in Attachment B.

The 1990 *Internal Dosimetry Technical Basis Manual* monitoring program for plutonium specified annual urine bioassay, an annual chest count, annual fecal bioassay, and personal air sampling. If monitored by workgroup, the fecal bioassay and personal air sampling were not performed unless a member of the workgroup had a confirmed intake [WSRC 1990].

7.3.3.1.2 Applicability to Unmonitored Workers

Records of in vitro bioassay for plutonium show urinalysis data back to 1951. As discussed above in the description of the sample collection process, there was guidance for whom to sample by 1970. The amount of available plutonium bioassay data available each year in the NOCTS data are relatively constant from 1955 through 1989, the entire period this dataset is used.

Construction Division workers were not necessarily included in the regular monitoring program, but nonCTWs in all the areas with the potential for exposure were supposed to be part of the monitoring program. By at least 1971, Construction Division personnel submitted a urine sample at least annually that was analyzed for FPs, those radionuclides specified by area HP in the construction Job Plans, and plutonium at least triennially.

7.3.3.1.3 Bioassay Analysis Techniques

From the beginning of the plutonium urinalysis program in 1954 to approximately 1959, urine samples were radiochemically processed using bismuth phosphate and lanthanum fluoride coprecipitation and electroplated, and activities were determined by gross alpha track analysis of exposed nuclear track

emulsion, type A (NTA) film. In 1959, nitric acid/hydrogen peroxide dissolution and ion exchange replaced the bismuth phosphate method. This was faster and used less urine but had essentially the same MDA. The reporting level did not change. Results were recorded as Pu or sometimes as ²³⁸Pu/²³⁹Pu. From around 1964 to 1988, counting for gross alpha activity was performed using a solid-state surface barrier alpha detector. TIOA liquid extraction replaced the ion exchange chemistry in 1966. This method used direct evaporation on planchets instead of electrodeposition. This method also allowed separation of neptunium and uranium from the same sample. Sensitivity was stated at 0.1 dpm/1.5L, which is consistent with the reporting level already in use. In or about 1981, a new coprecipitation technique was introduced for routine samples along with alpha spectrometry. Samplespecific determination of plutonium recovery by use of a ²⁴²Pu tracer was also introduced at that time. Results for ²³⁸Pu and ²³⁹Pu were reported separately. The TIOA method with gross alpha counting continued to be used on special samples until 1988. A database was introduced in 1990 and results were thereafter reported as per liter. Electrodeposition was reinstated in 1994. Separation of plutonium+neptunium, actinides, uranium, and strontium from a single sample using TEVA (Tetra Valent Actinides) and transuranic resins began in 2001. Alpha-emitting plutonium and neptunium isotopes are electrodeposited and counted by alpha spectrometry on a single planchet [Taylor et al. 1995; Taylor 2000].

7.3.3.2 **Data Validation**

7.3.3.2.1 Data Completeness and Quality

The plutonium bioassay data for the co-exposure study were compiled from NOCTS data. The completeness and quality of this data source are addressed in Section 7.2.1 above.

7.3.3.2.2 Data Interpretation

Most of the plutonium urinalysis data are plutonium gross alpha measurements. During the 1980s, some of the samples were analyzed by alpha spectroscopy, yielding separate results for 238Pu and ²³⁹Pu or ^{239/240}Pu. Because the two analytical techniques overlapped in time, the spectroscopic results were merged with the plutonium gross alpha measurements by using only the ²³⁹Pu or ^{239/240}Pu measurements and assuming a 12% 10-year decay plutonium mixture to convert to an equivalent plutonium gross alpha measurement. This mixture was chosen as favorable to claimants and is most often used during dose reconstructions.

7.3.3.2.3 Data Exclusion

Individuals with intakes of actinides are sometimes treated by chelation to accelerate the excretion of the radionuclides. Bioassay data influenced by chelation treatment are not suitable for use in an internal dose co-exposure study due to the altered biokinetics during chelation treatment. A listing of individuals who received chelation at SRS was compiled from SRDB chelation records from REAC/TS (see Table B-1). Bioassay data for samples collected within 100 days after receiving chelation treatment were not used. In addition, samples marked as LIP, those marked DTPA to indicate chelation, and those that lacked sufficient identifying information (e.g., sample date or payroll ID number) were excluded.

Sample results that were given as per unit mass or with an activity specified in curies rather than dpm were excluded because these are fecal samples.

The above discussion is a general summary of the method. The detailed statistical analysis instructions are in Attachment D.

7.3.3.3 Statistical Analysis

Statistical analysis of the plutonium bioassay data was performed in accordance with the current version of ORAUT-RPRT-0053 [ORAUT 2014a] using the TWOPOS method from that document and the multiple imputation method from ORAUT-RPRT-0096, *Multiple Imputation Applied to Bioassay Coworker Models* [ORAUT 2021]. The data were analyzed on an annual basis. Table 7-8 provides the results of the statistical analysis. Box and whisker plots of the TWOPOS data are shown in Figures 7-10 through 7-21. The box and whisker plots are overlaid with the cumulative excretion results predicted by the intake modeling as discussed further below. Due to the long biological retention period of plutonium, the cumulative excretion curves are split into two regimes: employment beginning in 1955 and employment beginning in 1971. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.3.4 Intake Modeling

Each result that was used in the intake calculations was assumed to have a normal distribution. A uniform absolute error of 1 was applied to all results, thereby assigning the same weight to each result. The IMBA and IDOT programs require in vitro bioassay results to be in units of activity per day; therefore, all urinalysis results were normalized as needed to 24-hour samples using 1,500 mL (the volume of urine assumed by SRS to be excreted in a 24-hour period).

Because of the nature of work at SRS, intakes could have been chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and to occur through inhalation with a default breathing rate of 1.2 m³/hr and a 5-µm activity median aerodynamic diameter particle size distribution.

IMBA and IDOT were used to fit the bioassay results to a series of inhalation intakes. Data were fit as a series of chronic intakes. The intake assumptions were based on observed patterns in the bioassay data. Periods with constant chronic intake rates were chosen by the selection of periods in which the bioassay results were similar. A new chronic intake period was started if the data indicated a significant sustained change in the bioassay results. By this method, the years from 1955 through 1990 were divided into multiple chronic intake periods.

Because the plutonium isotopes at SRS have very long radiological half-lives, and because the material is retained in the body for long periods, excretion results are not independent. For example, an intake in the 1950s could have contributed to urinary excretion in the 1980s and later. However, because of turnover in the workforce, the workers used to assess intakes in one period might not have been the same as those in a later period. To avoid potential underestimation of intakes in the later periods, each chronic intake was fit independently using only the bioassay results from the single intake period for types M, S, and SS solubility [ORAUT 2020]. This method results in an overestimate of the later TWOPOS results when the cumulative predicted urine sample results from multiple assumed intake periods are plotted. Excluded results are shown as an "X" in the figures in Attachment E; included results are shown as dots. The results of the statistical analysis of the urinalysis bioassay data that was used to calculate the intakes are provided for plutonium in Table 7-8.

The solid lines in Figures E-23 to E-82 in Attachment E show the individual fits to the 50th- and 84th-percentile excretion rates for type M, S, and SS materials for nonCTWs and CTWs. Figures E-83 to E-94 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type M, S, and SS intakes for nonCTWs and CTWs. Tables E-3 through E-8 list the 50th- and 84th-percentile intake rates with the associated GSDs from the plutonium urinalysis for solubility types M, S, and SS

Table 7-8. Calculated 50th- and 84th-percentile urinary excretion rates of plutonium based on a

lognormal fit to the TWOPOS data, 1955 to 1990 (dpm/d).a

	nonCTW	nonCTW		nonCTW	CTW	CTW		
	50th	84th	nonCTW	# of	50th	84th	CTW	CTW # of
Year	percentile	percentile	GSD	individuals	percentile	percentile	GSD	individuals
1955	0.01699	0.0537	3.16	245	0.01295	0.0370	2.86	49
1956	0.01859	0.0439	2.36	370	0.01717	0.0428	2.49	91
1957	0.01558	0.0386	2.48	360	0.01343	0.0304	2.27	93
1958	0.01727	0.0462	2.68	328	0.01308	0.0358	2.74	96
1959	0.01862	0.0554	2.98	375	0.01495	0.0519	3.47	100
1960	0.01448	0.0580	4.00	395	0.01255	0.0534	4.25	115
1961	0.00517	0.0196	3.80	402	0.00413	0.0163	3.94	124
1962	0.00220	0.0149	6.77	419	0.00165	0.0123	7.48	165
1963	0.00385	0.0198	5.14	365	0.00315	0.0224	7.12	128
1964	0.00906	0.0387	4.27	339	0.00776	0.0370	4.77	125
1965	0.00868	0.0360	4.14	433	0.00645	0.0332	5.14	167
1966	0.01401	0.0482	3.44	384	0.01284	0.0406	3.16	152
1967	0.00629	0.0387	6.14	358	0.00375	0.0263	7.00	152
1968	0.01186	0.0608	5.13	414	0.00957	0.0530	5.54	146
1969	0.03617	0.1136	3.14	296	0.03434	0.1188	3.46	108
1970	0.02776	0.0894	3.22	290	0.02591	0.0872	3.37	98
1971	0.01480	0.0582	3.94	381	0.01208	0.0564	4.67	110
1972	0.02024	0.0649	3.21	406	0.01819	0.0682	3.75	121
1973	0.00904	0.0435	4.82	402	0.00692	0.0400	5.78	123
1974	0.00828	0.0484	5.85	435	0.00610	0.0427	7.00	120
1975	0.01082	0.0587	5.43	406	0.00697	0.0370	5.30	104
1976	0.00806	0.0478	5.94	441	0.00514	0.0319	6.19	130
1977	0.00992	0.0513	5.17	458	0.00771	0.0377	4.90	118
1978	0.01776	0.0676	3.81	309	0.01556	0.0603	3.88	70
1979	0.01567	0.0638	4.07	406	0.01396	0.0523	3.74	127
1980	0.01153	0.0514	4.46	332	0.00967	0.0461	4.76	156
1981	0.00762	0.0380	4.99	437	0.00642	0.0299	4.65	206
1982	0.00236	0.0244	10.37	457	0.00167	0.0201	12.03	185
1983	0.00296	0.0321	10.83	355	0.00232	0.0292	12.61	125
1984	0.00384	0.0403	10.49	312	0.00317	0.0442	13.94	130
1985	0.00611	0.0483	7.90	277	0.00504	0.0409	8.11	117
1986	0.00672	0.0475	7.07	346	0.00546	0.0414	7.58	141
1987	0.00610	0.0392	6.42	334	0.00517	0.0389	7.53	112
1988	0.00503	0.0258	5.13	341	0.00402	0.0234	5.83	162
1989	0.00371	0.0201	5.42	360	0.00295	0.0173	5.88	157
1990	0.00270	0.0162	6.01	379	0.00251	0.0158	6.31	170

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

and for nonCTWs and CTWs. The supporting data for these figures and tables are contained in ORAUT [2022] in the \statistics\ subfolder. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Figures 7-10 through 7-21 overlay the urinary excretion rates (lines) predicted by the intake modeling on the box and whisker plots of the TWOPOS data. Predicted excretion GM from all intakes (Figures 7-10 through 7-15) exceeds the actual TWOPOS median results for years after 1960; the predicted excretion for 1955 to 1960 agrees well with the TWOPOS results. The top line is the predicted excretion 84th percentile from all intakes. The bottom line is the predicted excretion GM from all intakes.

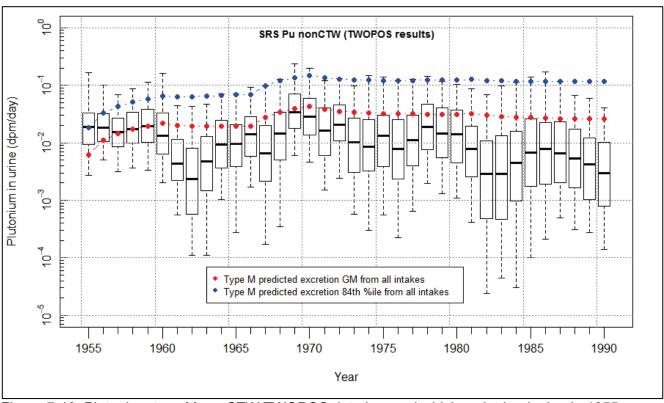


Figure 7-10. Plutonium type M nonCTW TWOPOS data box and whisker plot beginning in 1955.

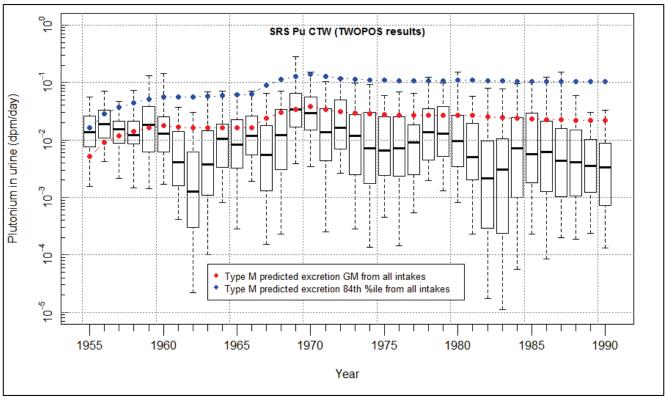
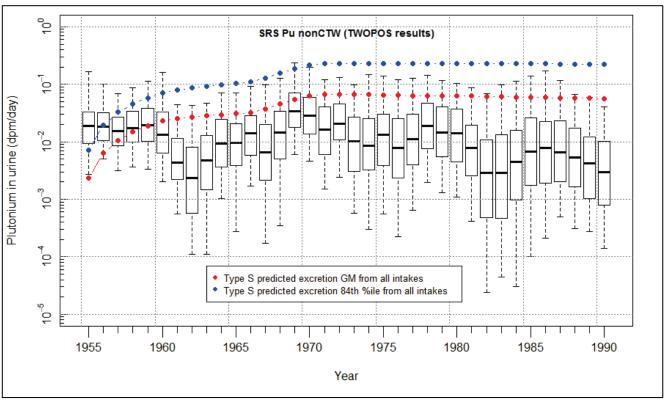



Figure 7-11. Plutonium type M CTW TWOPOS data box and whisker plot beginning in 1955. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Page 56 of 297

Figure 7-12. Plutonium type S nonCTW TWOPOS data box and whisker plot beginning in 1955.

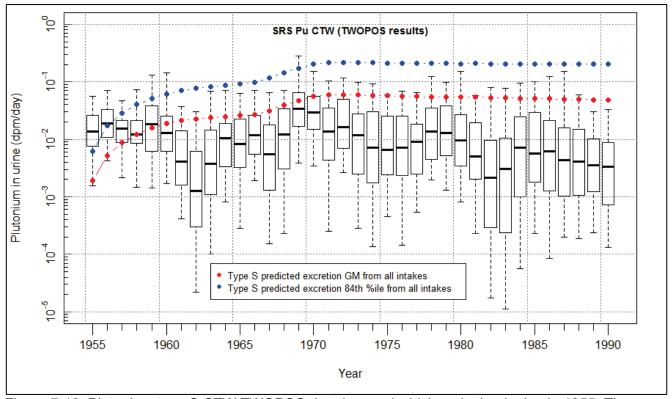


Figure 7-13. Plutonium type S CTW TWOPOS data box and whisker plot beginning in 1955. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

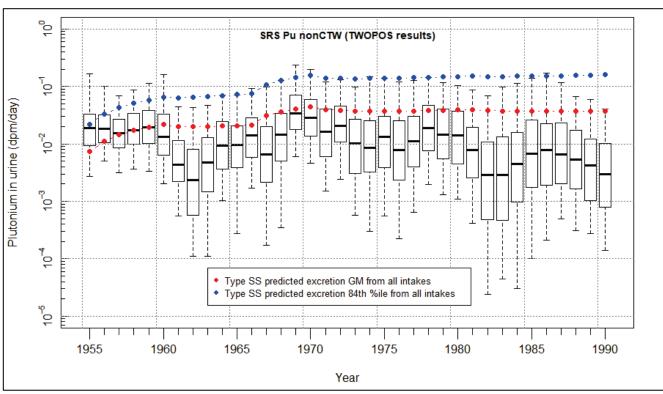


Figure 7-14. Plutonium type SS nonCTW TWOPOS data box and whisker plot beginning in 1955.

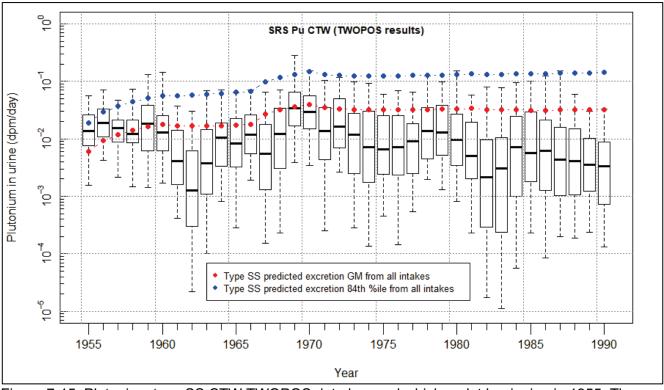


Figure 7-15. Plutonium type SS CTW TWOPOS data box and whisker plot beginning in 1955. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Figure 7-16. Plutonium type M nonCTW TWOPOS data box and whisker plot beginning in 1971.

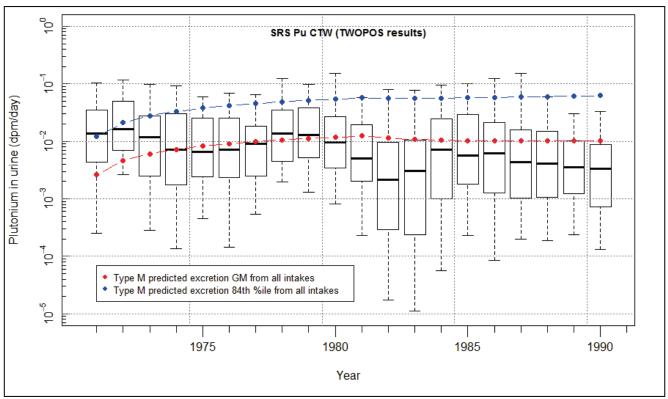


Figure 7-17. Plutonium type M CTW TWOPOS data box and whisker plot beginning in 1971. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

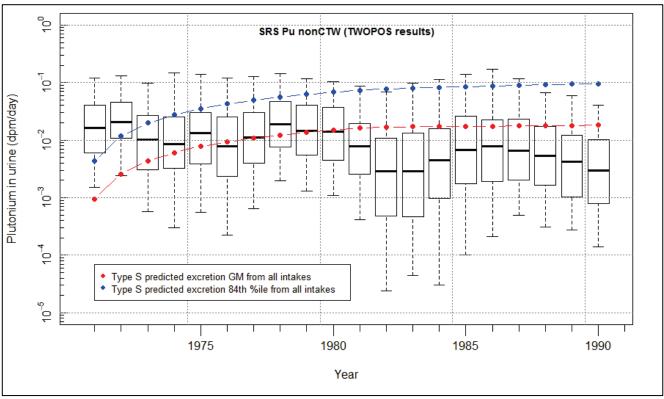


Figure 7-18. Plutonium type S nonCTW TWOPOS data box and whisker plot beginning in 1971.

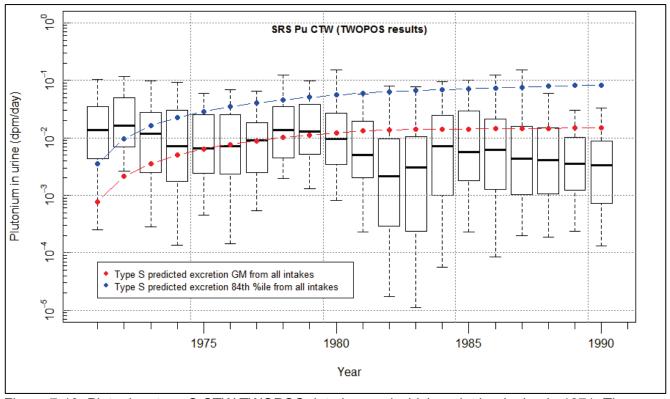


Figure 7-19. Plutonium type S CTW TWOPOS data box and whisker plot beginning in 1971. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

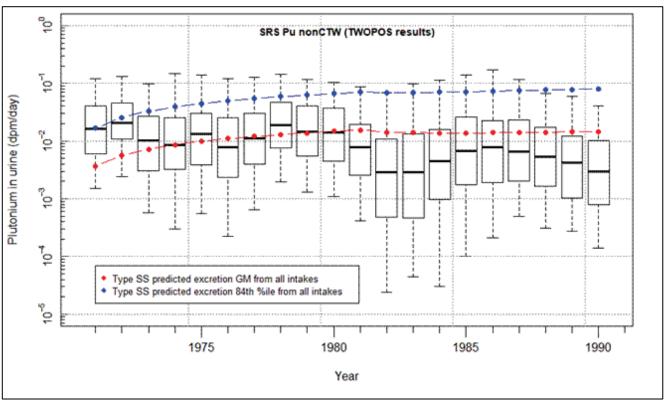


Figure 7-20. Plutonium type SS nonCTW TWOPOS data box and whisker plot beginning in 1971.

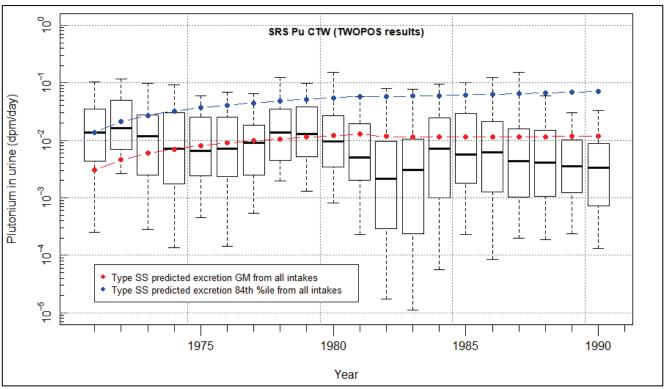


Figure 7-21. Plutonium type SS CTW TWOPOS data box and whisker plot beginning in 1971. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.4 Uranium

7.3.4.1 Data Adequacy

7.3.4.1.1 Personnel Monitoring

DuPont specified bioassay operating guides, sampling frequencies, instructions for requesting and collecting urine samples, and related administrative controls in the *Bioassay Control* procedures. Both fluorometric (mass) and activity measurements were used. The fluorometric measurements were commonly identified as "U" measurements with the activity measurements identified as "EU" (enriched uranium). The earliest available version of the procedure is Revision 2 dated January 2, 1968 [DuPont 1968a]. It indicates a uranium sample size of 150 mL was used with a positive result level of 5 μ g/1.5 L or 1 dpm/1.5 L and a resample level of 15 μ g/1.5 L or 15 dpm/1.5 L. The uranium sampling frequencies are given in Table C-2 for various job categories and work locations. The sample request process indicates that 24-hour composite samples required approval by an HP Senior Supervisor or above, indicating that routine samples were probably not 24-hour samples.

The periodicity of routine urine sampling changed throughout the 1970s for various work locations and also as a result of the introduction of in vivo counting [DuPont 1970, 1971a, 1971b, 1976], but the positive levels and resample levels remained the same. The sampling frequencies for various personnel at various times are provided in Attachment B. The process for requesting samples was similar to the previous process, but HP Senior Supervisor or above approval was no longer required for 24-hour samples. Additional instructions were provided for collecting samples in the event of suspected inhalations, ingestions, injections, skin contaminations, or whenever airborne contamination exceeded control guides. In 1971, additional guidance for Construction Division personnel was added but with no specific guidance for uranium. "Other nuclides," which would have included the trivalent nuclides, were monitored as specified by area HP in the construction Job Plans [DuPont 1971a].

The 1990 *Internal Dosimetry Technical Basis Manual* monitoring program for uranium specified semiannual urine bioassay, an annual chest count, annual fecal bioassay, and personal air sampling (Class Y uranium only). If monitored by workgroup, the fecal bioassay and personal air sampling were not performed unless a member of the workgroup had a confirmed intake [WSRC 1990].

7.3.4.1.2 Applicability to Unmonitored Workers

Records of in vitro bioassay for uranium show urinalysis data back to 1953. As discussed above in the description of the sample collection process, there was guidance for whom to sample by 1970. The amount of available uranium bioassay data available in the NOCTS data increases during the mid-1950s, remains relatively constant through the early 1970s, and then gradually diminishes through the 1980s.

Construction Division workers were not necessarily included in the regular monitoring program, but nonCTWs in all the areas with the potential for exposure were supposed to be part of the monitoring program. By at least 1971, Construction Division personnel submitted urine samples no less than annually that were analyzed for FPs and those radionuclides specified by area HP in the construction Job Plans, which could include uranium.

7.3.4.1.3 Bioassay Analysis Techniques

A variety of methods have been used historically to analyze uranium at SRS. These methods and the associated detection capabilities are summarized in Table 7-9.

Document No. ORAUT-TKBS-0003-7	Revision No. 00	Effective Date: 03/05/2024	Page 62 of 297

Table 7-9. Uranium urinalysis.^a

Period	Uranium mixtu	re and reporting level	Urine analysis method
Startup to mid-1960s	EU	0.15 dpm/1.5 L	Gross alpha for uranium, alpha track counting
Mid-1960s to 1982	EU	1 dpm/1.5 L	Gross alpha for uranium on solid state
			detector
1954–1982	DU	1-5 μg/L	Fluorophotometric analysis
1982–1986	U-235	0.14 ng	DNA
	NU	1 μg/L	DNA analysis for U-235
	EU	1 dpm/L	DNA analysis for U-235
1986–1990	EU	1 dpm/1.5 L	Gross alpha for uranium on solid-state
			detector.
1986–1994	DU	Not found, use 1 µg/L	KPA
1990–1994 ^b	EU	0.4 pCi/L (MDA)	Batch alpha counting
1994-present (EU)	DU	Use U-238°	Alpha spectroscopy for specific uranium
(DU) ^b	RU	Use U-238°	isotopes
	HEU	Use U-235°	
	U-234	0.032 pCi/L (MDA)	
	U-235	0.036 pCi/L (MDA)	
	U-238	0.032 pCi/L (MDA)	

- a. DNA = delayed neutron analysis; DU = depleted uranium; EU = enriched uranium; HEU = highly enriched uranium; KPA = kinetic phosphorescence analysis; NU = natural uranium; RU = recycled uranium.
- b. Decreasing analytical MDAs generally result in lower calculated co-exposure intake rates and thus extrapolation of the co-exposure intake rates past 1990 is believed to be claimant favorable.
- c. Use the applicable isotopic ratios from ORAUT-TKBS-0003-5 [ORAUT 2024b].

SRS technical documentation indicates that for earlier monitoring periods, the designations "enriched" and "depleted" analysis for uranium referred to analysis performed by alpha counting or chemical measurement, respectively, and was not necessarily indicative of the degree of uranium enrichment [ORAUT 2024b]. EU was the code used on employee bioassay cards for the gross alpha count method, and depleted uranium (DU) was used to designate the fluorophotometric method.

Enriched uranium was determined starting in the mid-1950s by alkaline earth phosphate coprecipitation, muffling the sample, and ion exchange separation on Dowex 1-X10 with 8N HCl. The final material was electrodeposited and autoradiographed on Kodak NTA film. This method had a reported sensitivity of 0.15 dpm per 1.5 L of urine. In the mid-1960s, the TIOA/gross alpha counting method was adopted for EU analyses. This method had an MDA of about 1 dpm/1.5 L, which was considered adequate at the time.

Analyses for DU were performed with the Oak Ridge fluorophotometric method before 1982. It is unknown when this procedure was adopted at SRS. The delayed neutron analysis (DNA) method was adopted for both EU and DU analyses around 1982. This method involved coprecipitating the uranium with calcium fluoride, activating the sample in a reactor, and counting the delayed neutrons emitted by the 235 U. This procedure had an MDA of 0.14 ng of 235 U, which provided a 1 µg/L MDA for natural uranium (NU) and a 1 dpm/L MDA for enrichments typically encountered at SRS.

With the shutdown in 1986 of the reactor facility used for DNA of uranium, the TIOA method was again adopted for EU and the Jarrell-Ash method for DU. Kinetic phosphorescence analysis (KPA) was used for DU from 1986 through 1994 [WSRC 2001].

7.3.4.2 Data Validation

7.3.4.2.1 Data Completeness and Quality

The uranium bioassay data for the co-exposure study were compiled from NOCTS data. Completeness and quality of this data source are addressed in Section 7.2.1.1 above.

7.3.4.2.2 Data Interpretation

Uranium urine samples were analyzed using radiometric and/or chemical means as discussed above. Some samples were analyzed in both manners. Based on a review of the data, the mass-based data (micrograms per unit volume) were assumed to be in units of μ g/L through July 10, 1961, and in units of μ g/1.5L thereafter. It was converted to activity before statistical analysis by assuming NU (1.52 dpm/ μ g) through 1967 and DU (0.826 dpm/ μ g) thereafter [McCarty 2000].

The above discussion is a general summary of the method. The detailed statistical analysis instructions are in Attachment D.

7.3.4.2.3 Data Exclusion

Sample results that were given as per unit mass were excluded because these are fecal samples.

7.3.4.3 Statistical Analysis

Statistical analysis of the uranium bioassay data was performed in accordance with the current version of ORAUT-RPRT-0053 [ORAUT 2014a] using the TWOPOS method from that document and the multiple imputation method from ORAUT-RPRT-0096 [ORAUT 2021]. The data were analyzed on an annual basis except for CTW data from 1979 through 1990, which were fit with 2-year intervals. These years were merged due to the small amount of CTW workers with data available in those years. Table 7-10 provides the results of the statistical analysis. Box and whisker plots of the TWOPOS data are shown in Figures 7-22 through 7-27. The box and whisker plots are overlaid with the excretion results predicted by the intake modeling as discussed further below. The supporting data for these figures and tables are contained in ORAUT [2022] in the \statistics\ subfolder. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.4.4 Intake Modeling

Each result that was used in the intake calculations was assumed to have a normal distribution. A uniform absolute error of 1 was applied to all results, thereby assigning the same weight to each result. The IMBA program requires in vitro bioassay results to be in units of activity per day, so all urinalysis results were normalized as needed to 24-hour samples using 1,500 mL (the volume of urine assumed by SRS to be excreted in a 24-hour period).

Because of the nature of work at SRS, intakes could have been chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and to occur through inhalation with a default breathing rate of 1.2 m³/hr and a 5-µm activity median aerodynamic diameter particle size distribution. IMBA was used to fit the bioassay results to a series of inhalation intakes. Data were fit as a series of chronic intakes. The intake assumptions were based on observed patterns in the bioassay data. Periods with constant chronic intake rates were chosen by the selection of periods in which the bioassay results were similar. A new chronic intake period was started if the data indicated a significant sustained change in the bioassay results. By this method, the years from 1953 through 1990 were divided into multiple chronic intake periods.

Table 7-10. Calculated 50th- and 84th-percentile urinary excretion rates of uranium based on a lognormal fit to the TWOPOS data, 1953 to 1990 (dpm/d).^{a,b}

lognom	nonCTW	nonCTW	aia, 1900 	nonCTW	CTW	CTW		
	50th	84th	nonCTW	# of	50th	84th	CTW	CTW # of
Year	percentile	percentile	GSD	# 01 individuals	percentile	percentile	GSD	individuals
	•	•			Not	Not	Not	Not
1953	9.7345	15.298	1.57	47	applicable	applicable	applicable	applicable
					Not	Not	Not	Not
1954	3.9499	6.064	1.54	139	applicable	applicable	applicable	applicable
1955	2.0791	2.885	1.39	341	2.0076	2.676	1.33	65
1956	1.8835	2.602	1.38	482	1.9108	2.586	1.35	89
1957	0.3510	1.768	5.04	272	0.4336	2.971	6.85	37
1958	0.5403	2.116	3.92	198	0.3495	1.589	4.55	37
1959	0.2431	1.230	5.06	258	0.1489	0.781	5.24	50
1960	0.1843	1.060	5.75	322	0.1167	0.516	4.42	53
1961	0.2222	1.040	4.68	279	0.1632	0.730	4.48	49
1962	0.3918	2.404	6.14	298	0.1787	0.939	5.26	65
1963	0.6816	3.919	5.75	324	0.3573	2.864	8.02	77
1964	0.7244	3.872	5.34	324	0.5762	3.255	5.65	80
1965	0.7557	3.951	5.23	316	0.6137	3.753	6.11	60
1966	0.6810	3.952	5.80	268	0.6399	3.966	6.20	53
1967	0.4961	3.311	6.67	259	0.7457	4.134	5.54	54
1968	0.1009	1.219	12.08	264	0.1032	1.089	10.56	60
1969	0.1414	1.326	9.38	216	0.1549	0.852	5.50	47
1970	0.3704	1.292	3.49	213	0.3043	0.979	3.22	58
1971	0.2438	0.957	3.93	266	0.2166	0.653	3.01	63
1972	0.2180	0.848	3.89	273	0.1982	0.667	3.37	62
1973	0.2022	0.844	4.17	263	0.1695	0.693	4.09	63
1974	0.1902	0.775	4.08	244	0.1797	0.777	4.33	69
1975	0.2156	0.730	3.39	241	0.3129	1.175	3.76	87
1976	0.1376	0.515	3.74	230	0.1285	0.469	3.65	59
1977	0.1269	0.510	4.02	137	0.1029	0.547	5.31	32
1978	0.1103	0.557	5.05	125	0.0770	0.383	4.98	28
1979	0.1657	0.610	3.68	127	0.1405	0.492	3.50	34
1980	0.1246	0.548	4.39	102	0.1.100	0.102	0.00	0.
1981	0.1947	0.710	3.65	125	0.2008	0.791	3.94	39
1982	0.4912	1.418	2.89	122	0.2000	0.701	0.0 1	
1983	0.4221	1.448	3.43	120	0.3230	1.265	3.92	34
1984	0.3236	1.494	4.62	98				
1985	0.5015	2.243	4.47	125	0.2708	0.957	3.53	37
1986	0.2009	0.588	2.93	126				
1987	0.1815	0.699	3.85	122	0.1442	0.665	4.61	38
1988	0.2058	0.720	3.50	106				
1989	0.1943	0.553	2.85	153	0.1513	0.584	3.86	29
1990	0.1630	0.509	3.12	134	55.10	3.30	5.00	_0

a. Where multiple years are noted for a single line of excretion rates, the data for these years were combined for the statistical analysis.

Because the uranium isotopes at SRS have very long radiological half-lives, and because the material is excreted over long periods for type S solubility, excretion results are not independent. For example, an intake in the 1950s could contribute to urinary excretion in the 1980s and later. However, because of turnover in the workforce, the workers used to assess intakes in one period might not have been the same as those in a later period. To avoid potential underestimation of intakes in the later periods, each chronic intake was fit independently using only the bioassay results from the single intake period

b. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Effective Date: 03/05/2024

for type S solubility. This method results in an overestimate of the later TWOPOS results when the cumulative predicted urine sample results from multiple assumed intake periods are plotted.

Excluded results are shown as an "X" in the figures in Attachment E; included results are shown as dots. For types M and F solubility, this approach was not used due to the more rapid excretion of material; all intake periods were fit simultaneously. The results of the statistical analysis that was used to calculate the intakes are provided for uranium in Table 7-10. The solid lines in Figures E-95 to E-102 in Attachment E show the fits to the 50th- and 84th-percentile excretion rates for type F and M materials for nonCTWs and CTWs. The solid lines in Figures E-103 to E-126 in Attachment E show the individual fits to the 50th- and 84th-percentile excretion rates for type S materials for nonCTWs and CTWs. Figures E-127 to E-130 show the 50th- and 84th-percentile predicted excretion rates, respectively, from all type S intakes for nonCTWs and CTWs. Tables E-9 to E-14 list the 50th- and 84th-percentile intake rates with the associated GSDs from the uranium urinalysis for solubility types F, M, and S, and nonCTWs and CTWs. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Figures 7-22 through 7-27 overlay the urinary excretion rates (lines) predicted by the intake modeling on the box and whisker plots of the TWOPOS data. The top line is the predicted excretion 84th percentile from all intakes. The bottom line is the predicted excretion GM from all intakes.

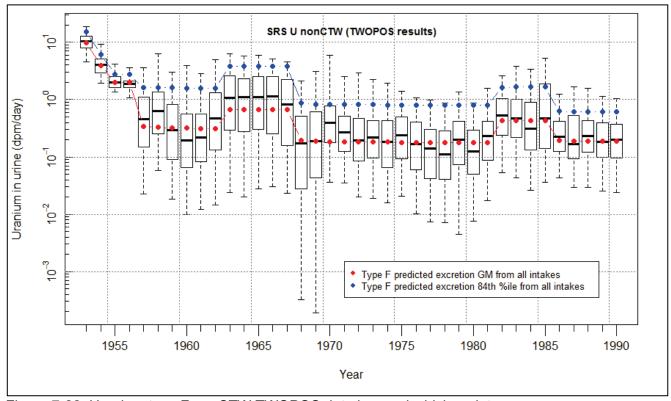


Figure 7-22. Uranium type F nonCTW TWOPOS data box and whisker plot.

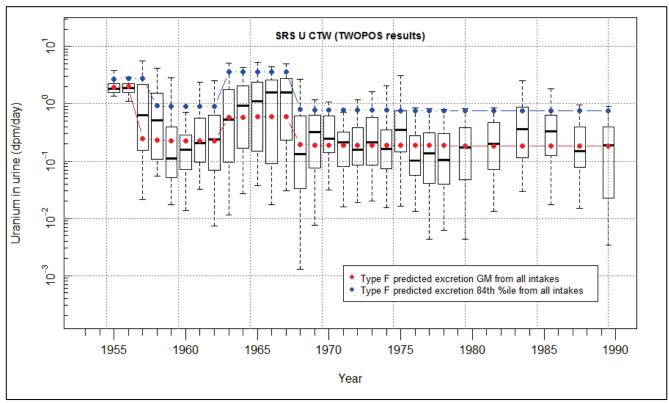


Figure 7-23. Uranium type F CTW TWOPOS data box and whisker plot. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

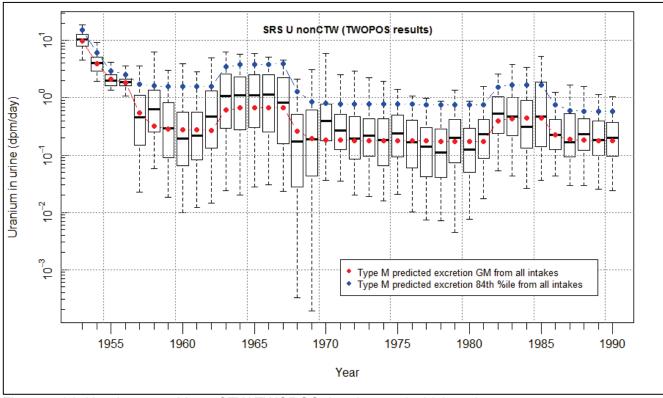


Figure 7-24. Uranium type M nonCTW TWOPOS data box and whisker plot.

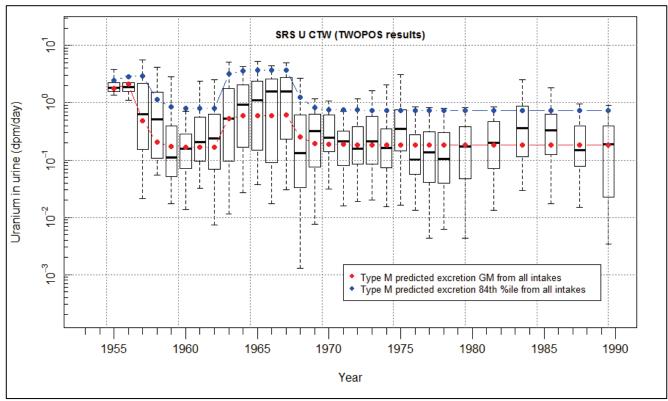


Figure 7-25. Uranium type M CTW TWOPOS data box and whisker plot. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

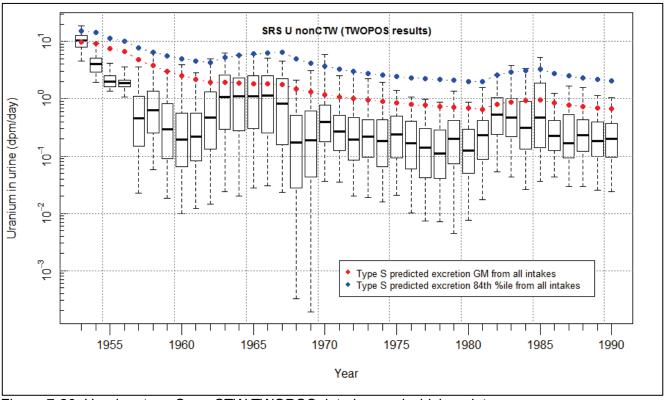


Figure 7-26. Uranium type S nonCTW TWOPOS data box and whisker plot.

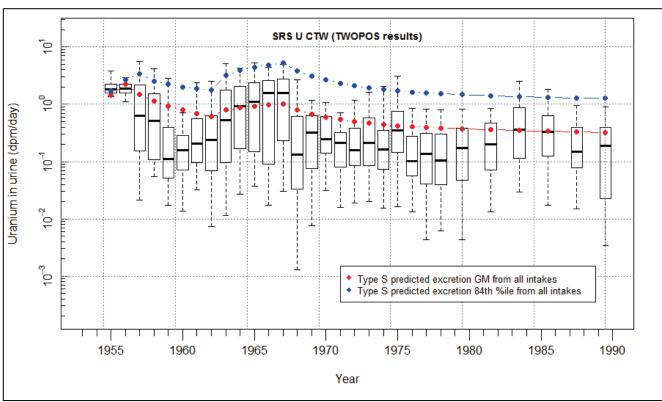


Figure 7-27. Uranium type S CTW TWOPOS data box and whisker plot. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.5 <u>Fission Products</u>

7.3.5.1 Data Adequacy

7.3.5.1.1 Personnel Monitoring

DuPont specified bioassay operating guides, sampling frequencies, instructions for requesting and collecting urine samples, and related administrative controls in the *Bioassay Control* procedures. The earliest available version of the procedure is Revision 2 dated January 2, 1968 [DuPont 1968a]. It indicates an FP sample size of 500 mL was used with a positive result level of 100 dpm/1.5L and a resample level of 200 dpm/1.5L. The FP sampling frequencies are given in Table C-2 for various job categories and work locations. The sample request process indicates that 24-hour composite samples required approval by an HP Senior Supervisor or above, indicating that routine samples were probably not 24-hour samples.

7.3.5.1.2 Applicability to Unmonitored Workers

Records of in vitro bioassay for FPs show urinalysis data back to 1951. As discussed above in the description of the sample collection process, there was guidance for whom to sample by 1970. The amount of available FP bioassay data available in the NOCTS data is relatively constant from 1955 through 1989.

Construction Division workers were not necessarily included in the regular monitoring program, but nonCTWs in all the areas with the potential for exposure were supposed to be part of the monitoring program.

7.3.5.1.3 Bioassay Analysis Techniques

From the beginning of the FP bioassay program until 1969, strontium was separated by alkaline earth phosphate coprecipitation followed by beta counting on a GM or proportional counter. Urine samples were acidified with nitric and orthophosphoric acid and a cobalt carrier solution. Ammonium hydroxide was added and the FPs precipitated. The precipitate was fired dry, dissolved with nitric acid, transferred to a planchet, dried again, and counted. This analysis was also called FP analysis. Both ⁸⁹Sr and ⁹⁰Sr would have been counted as well as radioisotopes of cerium and promethium, but it is favorable to claimants to assume the result is all ⁹⁰Sr. Recovery was greater than 90% for strontium, yttrium, and cerium/promethium radioisotopes. The lower limit of sensitivity was 29 dpm/750 mL for ⁹⁰Sr/Y [Boni 1959]. Bioassay records indicate that reporting levels of 30 dpm/500mL, 60 dpm/1.5L, and 100 dpm/1.5L for beta counting were used.

Taylor [2000] states that from 1969 to 1997 strontium was analyzed by liquid ion exchange that separates the yttrium progeny followed by beta proportional counting. Yttrium-91 would have been included as a possible interference but ⁸⁹Sr would not. However, beginning with 1966 there are insufficient strontium results to permit statistical analysis, so whole body count records were used for that period. See the ¹³⁷Cs section for the 1966 through 1990 FP co-exposure model.

7.3.5.2 Data Validation

7.3.5.2.1 Data Completeness and Quality

The FP bioassay data for the co-exposure study were compiled from NOCTS data. The completeness and quality of this data source are addressed in Section 7.2.1.

7.3.5.2.2 **Data Interpretation**

Most of the FP urinalysis data are from chemically processed gross beta measurements through 1965 (i.e., "major chemical processing," to use the terminology from ORAUT-OTIB-0054, *Fission and Activation Product Assignment for Internal Dose-Related Gross Beta and Gross Gamma Analyses* [ORAUT 2015].

7.3.5.2.3 Data Exclusion

Samples marked as LIP, IA (insufficient amount), gross gamma results, and those that lacked sufficient identifying information (e.g., sample date or payroll ID number) or result information were excluded. Sample results that were given as per unit mass were excluded because these are fecal samples. The above discussion is a general summary of the method. The detailed statistical analysis instructions are in Attachment D.

7.3.5.3 Statistical Analysis

Statistical analysis of the FP bioassay data was performed in accordance with the current version of ORAUT-RPRT-0053 [ORAUT 2014a] using the TWOPOS method from that document and the multiple imputation method from ORAUT-RPRT-0096 [ORAUT 2021]. The data were analyzed on an annual basis. Table 7-11 provides the results of the statistical analysis. Box and whisker plots of the TWOPOS data are shown in Figures 7-28 and 7-29. The box and whisker plots are overlaid with the excretion results predicted by the intake modeling as discussed further below. The supporting data for these figures and tables are contained in ORAUT [2022] in the \statistics\ subfolder. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.5.4 Intake Modeling

Each result that was used in the intake calculations was assumed to have a normal distribution. A uniform absolute error of 1 was applied to all results, thereby assigning the same weight to each result. The IMBA program requires in vitro bioassay results to be in units of activity per day; therefore, all urinalysis results were normalized as needed to 24-hour samples using 1,500 mL (the volume of urine assumed by SRS to be excreted in a 24-hour period).

Because of the nature of work at SRS, intakes could have been chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and to occur through inhalation with a default breathing rate of 1.2 m³/hr and a 5-µm activity median aerodynamic diameter particle size distribution.

IMBA was used to fit the bioassay results to a series of inhalation intakes. The FP activity was assumed to be strontium activity for intake modeling. Data were fit as a series of chronic intakes. The intake assumptions were based on observed patterns in the bioassay data. Periods with constant chronic intake rates were chosen by the selection of periods in which the bioassay results were similar. A new chronic intake period was started if the data indicated a significant sustained change in the bioassay results. By this method, the years from 1955 through 1965 were divided into multiple chronic intake periods. The results of the statistical analysis that was used to calculate the intakes are provided for FPs in Table 7-11.

The solid lines in Figures E-131 to E-134 in Attachment E show the fits to the 50th- and 84th-percentile excretion rates for type F ⁹⁰Sr for nonCTWs and CTWs, respectively. Tables E-15 and E-16 list the 50th- and 84th-percentile intake rates with the associated GSDs from the FP urinalysis for nonCTWs and CTWs. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Figures 7-28 and 7-29 overlay the urinary excretion rates (lines) from the intake modeling on the box and whisker plots of the TWOPOS data. The top line is the predicted excretion 84th percentile from all intakes. The bottom line is the predicted excretion GM from all intakes.

Table 7-11. Calculated 50th- and 84th-percentile urinary excretion rates of FPs based on a lognormal fit to the TWOPOS data, 1955 to 1965 (dpm/d).^a

	nonCTW	nonCTW		nonCTW	CTW	CTW		
	50th	84th	nonCTW	# of	50th	84th	CTW	CTW # of
Year	percentile	percentile	GSD	individuals	percentile	percentile	GSD	individuals
1955	14.725	32.21	2.19	247	14.983	29.62	1.98	52
1956	17.617	41.96	2.38	333	16.642	37.76	2.27	76
1957	16.238	37.70	2.32	205	16.507	35.50	2.15	78
1958	15.598	36.10	2.31	162	15.510	38.66	2.49	105
1959	8.457	27.92	3.30	224	9.216	29.85	3.24	49
1960	7.146	21.31	2.98	345	7.126	19.43	2.73	109
1961	8.885	23.22	2.61	438	9.433	26.47	2.81	143
1962	17.376	40.43	2.33	556	18.965	45.56	2.40	256
1963	27.747	48.97	1.76	499	28.544	53.54	1.88	253
1964	28.213	50.83	1.80	494	28.956	54.23	1.87	242
1965	18.197	48.56	2.67	492	19.604	54.99	2.80	240

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

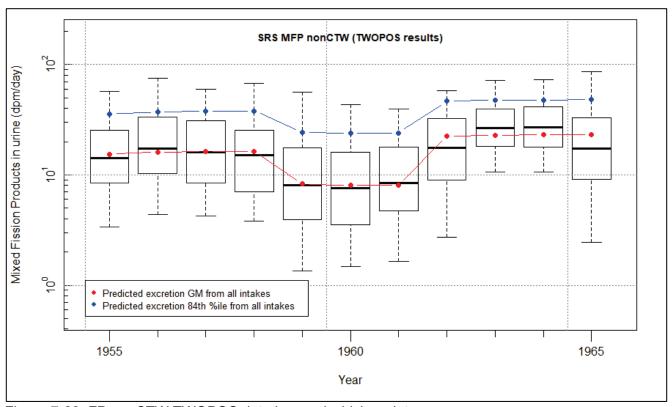


Figure 7-28. FP nonCTW TWOPOS data box and whisker plot.

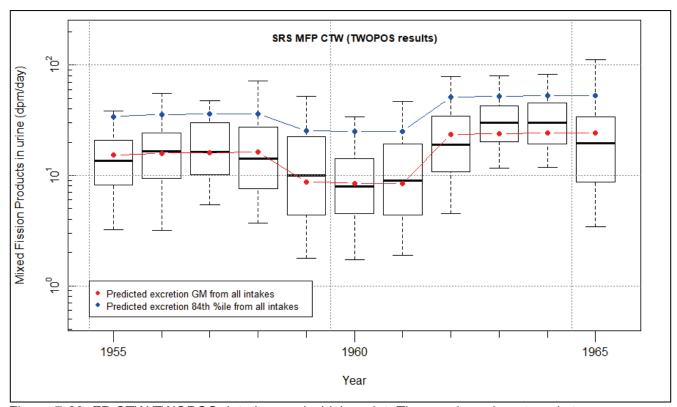


Figure 7-29. FP CTW TWOPOS data box and whisker plot. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.6 Cobalt-60

Cobalt-60 was evaluated for 1955 through 1970. During this period, some workers handled pure or relatively pure ⁶⁰Co [Boswell 2000, pp. 116–117].

7.3.6.1 Bioassay Data

The FP bioassay data discussed in Section 7.3.5 was used to model ⁶⁰Co intakes from 1955 through 1965 based on the beta emissions from ⁶⁰Co. Boni [1959] indicates the recovery for ⁶⁰Co for the method used at the time was 85%.

Beginning in 1966, records indicate FP urinalysis was primarily a gross gamma counting method with a reporting level of 1 nCi/1.5L. These data were not used for calculation of MFP co-exposure intakes but are used here for the 1966 to 1970 ⁶⁰Co analysis. These gross gamma results were divided by 2 to account for the fact that ⁶⁰Co has two 100% yield gamma rays. The detailed statistical analysis instructions are in Attachment D.

7.3.6.2 Statistical Analysis

Statistical analysis of the FP bioassay data was performed in accordance with the current version of ORAUT-RPRT-0053 [ORAUT 2014a] using the TWOPOS method from that document and the multiple imputation method from ORAUT-RPRT-0096 [ORAUT 2021]. The data were analyzed on an annual basis. Table 7-12 provides the results of the statistical analysis. Box and whisker plots of the TWOPOS data are shown in Figures 7-30 through 7-33. The top line is the predicted excretion 84th percentile from all intakes. The bottom line is the predicted excretion GM from all intakes. The box and whisker plots are overlaid with the urinary excretion predicted by the intake modeling as discussed further below. The supporting data for these figures and tables are contained in ORAUT [2022] in the \statistics\ subfolder. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-12. Calculated 50th- and 84th-percentile urinary excretion rates of ⁶⁰Co based on a lognormal fit to the TWOPOS data, 1955 to 1970 (pCi/d).^a

	nonCTW	nonCTW	(1	nonCTW	CTW	CTW		
	50th	84th	nonCTW	# of	50th	84th	CTW	CTW # of
Year	percentile	percentile	GSD	individuals	percentile	percentile	GSD	individuals
1955	6.63	14.51	2.19	247	6.75	13.34	1.98	52
1956	7.94	18.90	2.38	333	7.50	17.01	2.27	76
1957	7.31	16.98	2.32	205	7.44	15.99	2.15	78
1958	7.03	16.26	2.31	162	6.99	17.41	2.49	105
1959	3.81	12.58	3.30	224	4.15	13.45	3.24	49
1960	3.22	9.60	2.98	345	3.21	8.75	2.73	109
1961	4.00	10.46	2.61	438	4.25	11.92	2.81	143
1962	7.83	18.21	2.33	556	8.54	20.52	2.40	256
1963	12.50	22.06	1.76	499	12.86	24.12	1.88	253
1964	12.71	22.90	1.80	494	13.04	24.43	1.87	242
1965	8.20	21.87	2.67	492	8.83	24.77	2.80	240
1966	67.2	214.12	3.19	443	59.9	202.23	3.37	177
1967	91.9	294.15	3.20	467	97.2	314.34	3.24	192
1968	76.3	234.43	3.07	485	80.5	249.70	3.10	240
1969	69.0	215.65	3.13	391	66.7	206.84	3.10	211
1970	60.5	219.60	3.63	467	55.6	203.14	3.66	226

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

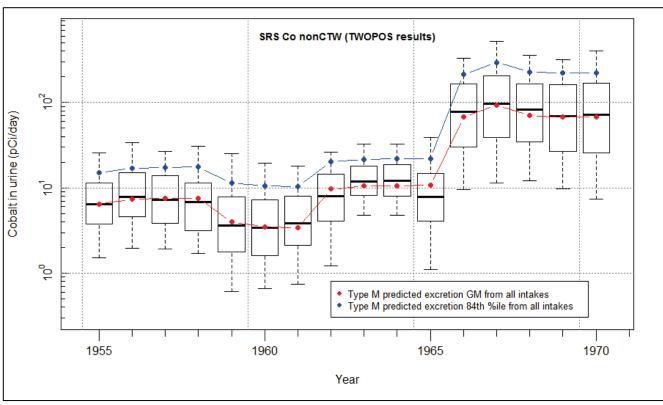


Figure 7-30. Cobalt-60 nonCTW TWOPOS data box and whisker plot, Type M.

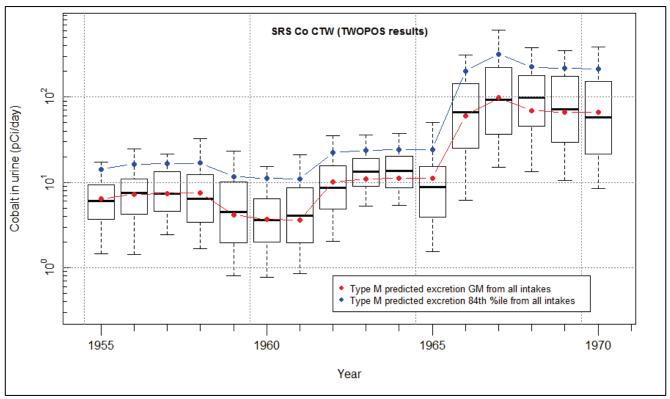


Figure 7-31. Cobalt-60 CTW TWOPOS data box and whisker plot, Type M. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

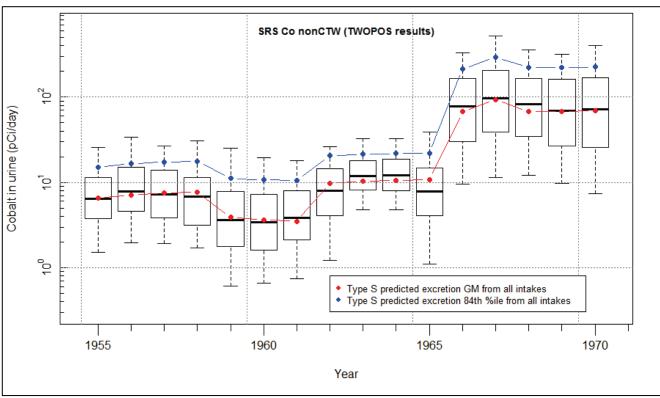


Figure 7-32. Cobalt-60 nonCTW TWOPOS data box and whisker plot, Type S.

Document No. ORAUT-TKBS-0003-7

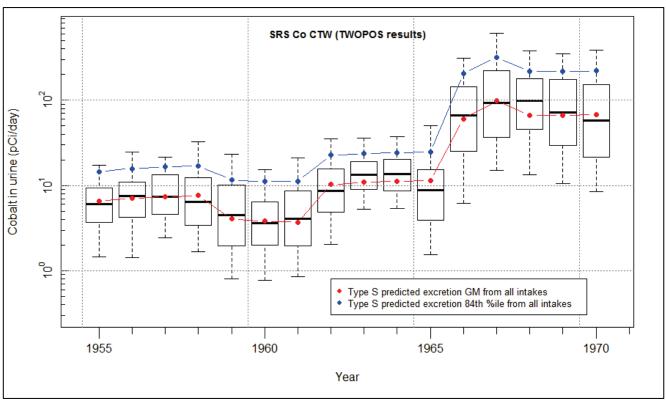


Figure 7-33. Cobalt-60 CTW TWOPOS data box and whisker plot, Type S. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.6.3 Intake Modeling

Each result that was used in the intake calculations was assumed to have a normal distribution. A uniform absolute error of 1 was applied to all results, thereby assigning the same weight to each result. The IMBA program requires in vitro bioassay results to be in units of activity per day, so all urinalysis results were normalized as needed to 24-hour samples using 1,500 mL (the volume of urine assumed by SRS to be excreted in a 24-hour period).

Because of the nature of work at SRS, intakes could have been chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and to occur through inhalation with a default breathing rate of 1.2 m³/hr and a 5-µm activity median aerodynamic diameter particle size distribution.

IMBA was used to fit the bioassay results to a series of inhalation intakes. Data were fit as a series of chronic intakes. The intake assumptions were based on observed patterns in the bioassay data. Periods with constant chronic intake rates were chosen by the selection of periods in which the bioassay results were similar. A new chronic intake period was started if the data indicated a significant sustained change in the bioassay results. By this method, the years from 1955 through 1970 were divided into multiple chronic intake periods.

The solid lines in Figures E-135 to E-142 in Attachment E show the fits to the 50th- and 84th-percentile excretion rates for types M and S materials for nonCTWs and CTWs. Tables E-17 through E-20 list the 50th- and 84th-percentile intake rates with the associated GSDs from the ⁶⁰Co urinalysis. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Figures 7-30 through 7-33 overlay the urinary excretion rates (lines) from the intake modeling on the box and whisker plots of the TWOPOS data. The top line is the predicted body content 84th percentile from all intakes. The bottom line is the predicted body content GM from all intakes

7.3.7 Cesium-137

7.3.7.1 Data Adequacy

7.3.7.1.1 Personnel Monitoring

DuPont specified bioassay operating guides, sampling frequencies, and related administrative controls in the *Bioassay Control* procedure. The earliest version of the procedure that discussed in vivo bioassay is Revision 4 dated March 1971 [DuPont 1971a]. It indicates that routine chest counting was performed for EU, Am/Cm/Cf, and plutonium. For the Construction Division, chest counts and WBCs were required for new employees, employees with confirmed intakes of radionuclides other than tritium, employees who were involved in an incident, and upon termination if the employee had previously had a chest count or WBC. WBCs were also required for elevated nasal or saliva smears.

Although in vivo bioassay is not mentioned in the bioassay control procedure until 1971, in vivo counts were performed much earlier than that, and records of WBCs date back to 1960. The number of WBCs increased beginning in 1971 and it steadily became more common thereafter. By 1976 [DuPont 1976], WBCs had effectively replaced FP urinalysis as the primary means of detecting FP intakes.

The 1990 *Internal Dosimetry Technical Basis Manual* monitoring program for FPs specified semiannual WBCs for gamma emitters regardless of whether there was individual or workgroup monitoring [WSRC 1990].

7.3.7.1.2 Applicability to Unmonitored Workers

Records of in vivo bioassay for FPs show WBC data back to 1960. As discussed above, there was guidance for whom to count by 1971. The amount of available WBC data available in the NOCTS data is relatively limited from 1966 through 1970, rapidly increases during the early 1970s, and is relatively constant from the mid-1970s through 1989.

Construction Division workers were not necessarily included in the regular periodic monitoring program but were scheduled for baseline, termination, and incident-driven WBCs.

NonCTWs in all the areas with the potential for exposure were supposed to be part of the monitoring program. By at least 1976, Construction Division personnel appeared to have been part of the same counting frequency as other employees [DuPont 1976].

7.3.7.1.3 Bioassay Analysis Techniques

The SRS Whole Body Counting Facility was constructed in 1960. During the 1960s, a "40-cm arc" geometry was used where the individual being counted was seated in a chair, which positioned the body from the knees to the chin approximately 40 cm from the detector. A 1-m arc geometry was also used in special counts where higher accuracy was desired. The detector used in this configuration was a cylindrical NaI detector with a diameter of 8 in. and a length of 4 in. The minimum detectable body burden of ¹³⁷Cs for this detector was 1 nCi [Taylor et al. 1995].

During the early 1970s, the 40-cm arc geometry was replaced with a bed geometry using four 4- by 4-in. Nal detectors positioned in an arc under the bed. Count-specific MDAs are calculated even though a nonzero ¹³⁷Cs body content was generally reported. In the mid-1980s, mobile whole body counters using large Nal detectors and a shadow shield were purchased to measure high-energy photon emitters, which includes ¹³⁷Cs [Taylor et al. 1995].

7.3.7.2 Data Validation

7.3.7.2.1 Data Completeness and Quality

The WBC data for the co-exposure study were compiled from NOCTS data. The completeness and quality of this data source are addressed in Section 7.2.1.

7.3.7.2.2 Data Interpretation

In most instances, the WBC data provide results for ¹³⁷Cs. Results are variously reported as a positive value, an uncensored value, a "<" value, or "<MDA" with a quantified count-specific MDA. Depending on the WBC reporting format, the MDA at the 95% confidence level is also available. During the 1980s, it became more common to report only radionuclides that were detected. In those instances, it can be assumed that a WBC without a reported ¹³⁷Cs result implies that ¹³⁷Cs was present at some value less than the detection limit (i.e., a censored result).

7.3.7.2.3 <u>Data Exclusion</u>

Results marked "New," "New Hire," or "New Employee" were excluded because these results are not indicative of occupational exposure at SRS. Results that lacked sufficient identifying information (e.g., sample date or payroll ID number) or result information were excluded. No attempt was made to exclude results that could have been influenced by the consumption of wild game. The detailed statistical analysis instructions are in Attachment D.

7.3.7.3 Statistical Analysis

Statistical analysis of the WBC data was performed in accordance with the current version of ORAUT-RPRT-0053 [ORAUT 2014a] using the TWOPOS method from that document and the multiple imputation method from ORAUT-RPRT-0096 [ORAUT 2021]. The data were analyzed on an annual basis except for the years indicated in Table 7-13, which were merged due to the small amount of worker data available in those years. No analysis was performed for CTWs for 1960 because there was no CTW worker data in that year for evaluation. Table 7-13 provides the results of the statistical analysis. Box and whisker plots of the TWOPOS data are shown in Figures 7-34 and 7-35. The box and whisker plots are overlaid with the whole body content predicted by the intake modeling as discussed further below. The supporting data for these figures and tables are contained in ORAUT [2022] in the \statistics\ subfolder.

7.3.7.4 Intake Modeling

Each result that was used in the intake calculations was assumed to have a normal distribution. A uniform absolute error of 1 was applied to all results, thereby assigning the same weight to each result. Because of the nature of work at SRS, intakes could have been chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and to occur through inhalation with a default breathing rate of 1.2 m³/hr and a 5-µm activity median aerodynamic diameter particle size distribution.

IMBA was used to fit the bioassay results to a series of inhalation intakes. Data were fit as a series of chronic intakes. The intake assumptions were based on observed patterns in the bioassay data. Periods with constant chronic intake rates were chosen by the selection of periods in which the bioassay results were similar. A new chronic intake period was started if the data indicated a significant sustained change in the bioassay results. By this method, the years from 1960 through 1990 were divided into multiple chronic intake periods. The results of the statistical analysis that were used to calculate the intakes are provided for ¹³⁷Cs in Table 7-13. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Excluded results are shown as an "X" in the figures in Attachment E; included results are shown as dots. The solid lines in Figures E-143 through E-150 in Attachment E show the fits individual to the 50th- and 84th-percentile body burdens for type F ¹³⁷Cs for nonCTWs and CTWs. Figures E-151 to E-154 show the 50th- and 84th-percentile predicted body burdens, respectively, from all type F ¹³⁷Cs intakes for nonCTWs and CTWs. Tables E-21 and E-22 list the 50th- and 84th-percentile intake rates with the associated GSDs from the ¹³⁷Cs WBCs. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

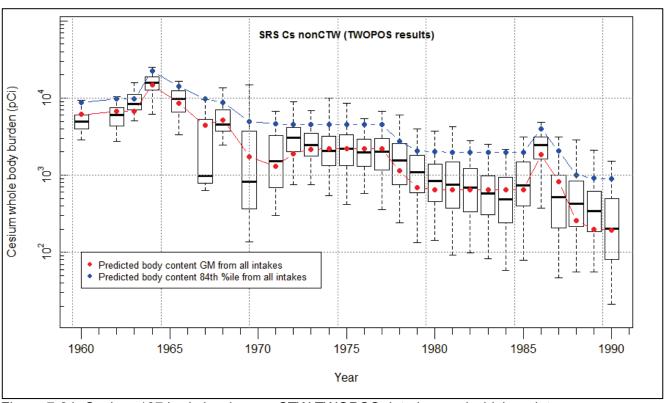

Figures 7-34 and 7-35 overlay the WBCs from the intake modeling (lines) on the box and whisker plots of the TWOPOS data. The top line is the predicted body content 84th percentile from all intakes. The bottom line is the predicted body content GM from all intakes.

Table 7-13. Calculated 50th- and 84th-percentile ¹³⁷Cs whole body content based on a lognormal fit to the TWOPOS data, 1960 to 1989 (pCi).a

	nonCTW	nonCTW	<u> </u>	nonCTW	CTW	CTW		
	50th	84th	nonCTW	# of	50th	84th	CTW	CTW # of
Yearb	percentile	percentile	GSD	individuals	percentile	percentile	GSD	individuals
1060		-			Not	Not	Not	Not
1960	4,954	6,926	1.40	200	applicable	applicable	applicable	applicable
1961					4,472	5,884	1.32	34
1962	5,780	8,696	1.50	215	5,996	8,067	1.35	57
1963	8,762	12,464	1.42	151	9,634	13,846	1.44	66
1964	14,745	22,345	1.52	70				
1965	0.500		4.05	40	13,765	21,442	1.56	33
1966	8,588	14,187	1.65	46				
1967	2,014	5,667	2.81	50	4 754	44.070	0.07	25
1968	5,034	8,422	1.67	73	4,751	11,273	2.37	35
1969	4.040	F 050	4.07	70				
1970	1,242	5,052	4.07	79	1,997	6,309	3.16	28
1971	1,441	4,165	2.89	59				
1972	2,887	5,702	1.98	144	0.004	4.054	4.70	5 4
1973	2,384	4,581	1.92	201	2,881	4,951	1.72	54
1974	2,041	4,384	2.15	327	2,187	4,379	2.00	70
1975	2,047	4,769	2.33	395	2,118	4,323	2.04	88
1976	1,900	3,704	1.95	221	1,645	3,272	1.99	62
1977	1,839	4,073	2.21	327	1,338	3,137	2.34	95
1978	1,329	3,668	2.76	338	1,095	2,660	2.43	91
1979	963	2,578	2.68	308	736	2,524	3.43	66
1980	755	2,230	2.95	323	688	2,169	3.15	81
1981	654	2,176	3.33	361	646	2,003	3.10	91
1982	553	1,652	2.99	348	458	1,482	3.23	85
1983	457	1,487	3.26	292	389	1,234	3.17	92
1984	364	1,234	3.39	271	442	1,273	2.88	69
1985	669	2,015	3.01	219	545	1,877	3.44	55
1986	2,017	4,152	2.06	311	1,336	3,964	2.97	62
1987	403	1,622	4.03	371	310	996	3.21	180
1988	398	1,313	3.30	370	290	738	2.55	240
1989	349	1,044	2.99	467	300	898	2.99	240
1990	200	771	3.86	653	202	767	3.79	388

These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Where multiple years are noted for a single line of whole body content data, the data for these years were combined for the statistical analysis.

Page 79 of 297

Figure 7-34. Cesium-137 body burden nonCTW TWOPOS data box and whisker plot.

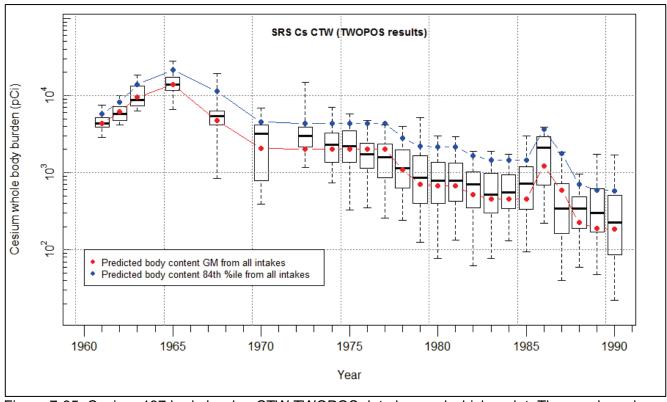


Figure 7-35. Cesium-137 body burden CTW TWOPOS data box and whisker plot. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.8 Neptunium

7.3.8.1 Data Adequacy

7.3.8.1.1 Personnel Monitoring

DuPont specified bioassay operating guides, sampling frequencies, instructions for requesting and collecting urine samples, and related administrative controls in the *Bioassay Control* procedures. The earliest available version of the procedure is Revision 2 dated January 2, 1968 [DuPont 1968a]. It indicates a neptunium sample size of 250 mL was used with a positive result level of 0.1 dpm/1.5L and a resample level of 0.5 dpm/1.5L, the same as for plutonium. The neptunium sampling frequencies are given in Table C-2 for various job categories and work locations. The sample request process indicates that 24-hour composite samples required approval by an HP Senior Supervisor or above, indicating that routine samples were probably not 24-hour samples.

In Revision 3 of the *Bioassay Control* procedure in 1970 [DuPont 1970], the positive level for neptunium was noted as 0.1 dpm/1.5L and the positive level was used for the resample level, the same as for plutonium. An intake was considered confirmed if the initial bioassay result was >0.5 dpm/1.5L and a resample was >0.1 dpm/1.5L. Neptunium was no longer part of the routine sampling program but was sampled when requested by area HP, and it was stated that "area Health Physics will provide Personnel Monitoring with a list of employees requiring neptunium analysis [NP] if plutonium urinalysis is positive" [DuPont 1970]. The process for requesting samples was similar to the previous process, but HP Senior Supervisor or above approval was no longer required for 24-hour samples. Additional instructions were provided for collecting samples in the event of suspected inhalations, ingestions, injections, skin contaminations, or whenever airborne contamination exceeded control guides.

Throughout the 1970s, the sample collection guidance for neptunium remained the same in that it was only collected from personnel designated by area HP when plutonium urinalysis samples were positive [DuPont 1971a, 1971b, 1976].

The 1990 Internal Dosimetry Technical Basis Manual monitoring program for transuranic elements other than plutonium, which includes neptunium, specified a worker monitoring program of quarterly urine bioassay, an annual chest count, semiannual fecal bioassay, and personal air sampling. If monitored by workgroup, annual urine bioassay and an annual chest count were specified [WSRC 1990].

7.3.8.1.2 Applicability to Unmonitored Workers

Records of in vitro bioassay for neptunium show urinalysis data back to 1961. As discussed above in the description of the sample collection process, there was guidance for whom to sample by 1968. The amount of available neptunium bioassay data in the neptunium logbooks is limited and is most common for the 1960s. Review of the available data and the *Bioassay Control* procedures indicates that neptunium urinalysis was largely discontinued unless a worker with the potential for neptunium exposure had a positive plutonium measurement.

Beginning in 1970, the co-exposure evaluation of potential neptunium intakes is based on WBC data due to the reduction in neptunium urinalysis sampling frequency. Although not intended as a primary means of detecting neptunium intakes, the WBC data can be used to estimate intakes. This is due to the nature of WBCs, in which the entire spectrum of data from gamma emitters is typically recorded rather than just specific radionuclides of interest for a particular worker.

Two forms of bioassay analysis were used for neptunium. The first was urinalysis specifically analyzed for neptunium, and the second was WBCs from which neptunium data can be extracted.

The urinalysis method started in 1959. Neptunium was coprecipitated, ion exchanged, electrodeposited, and counted on NTA. In the mid-1960s, the TIOA/gross alpha method was adopted [Butler 1968]. In 1993, anion exchange followed by direct mounting and gross-alpha counting was adopted. Since 1994, extraction chromatography resin has been used to separate neptunium from FPs and other actinides and electrodeposition has been used to mount the sample. There are no suitable isotopes of neptunium available to use as tracers, so this is still a gross alpha counting technique [Taylor et al. 1995].

During the 1970s and 1980s, the primary means of measuring neptunium was via WBCs. Some earlier WBCs identified a region of interest (ROI; gamma-ray energy range) that was associated with neptunium, but the gamma-ray yield in this ROI is relatively low. The gamma ray yield of neptunium and neptunium decay products in other regions of interest is higher. Section 7.3.8.2.2 details how data from the other regions of interest are used to infer potential neptunium whole body contents.

7.3.8.2 Data Validation

7.3.8.2.1 Data Completeness and Quality

For the 1960s, urinalysis data from analytical laboratory logbooks was used [DuPont 1956–1961, 1961–1969, 1968–1972, 1969]. The completeness of the data from the logbooks was evaluated by comparing the annual bioassay summaries [DuPont 1965–1968, 1968b, 1969–1981] with the number of samples in the logbooks shown as a percentage of the number given in the bioassay summaries. The results of this comparison are shown in Table 7-14. The ability to compare these numbers directly is limited by the fact that the logbooks record the date of sample collection while the summaries indicate the number of analyzed samples. On some occasions, samples were not analyzed until months after collection. With the exception of 1963 and 1967, the number of recorded samples in the logbooks is similar to the number of samples noted in the summaries. Some of the samples from 1962 might have been analyzed in 1963, accounting for the discrepancy in that year.

Table 7-14. Logbook data completeness estimate.^a

	Bioassay summary	Logbook	% in
Year	# of Np samples	# of Np samples	logbook
1961	N/A	612	N/A
1962	N/A	1,537	N/A
1963	898	542	60
1964	83	79	95
1965	96	92	96
1966	48	48	100
1967	17	62	365
1968	118	110	93
1969	50	51	102

a. N/A = not applicable.

A completeness test was also performed by determining whether the neptunium logbook dataset had bioassay data for those individuals with neptunium bioassay data in NOCTS. The test was performed in two parts as discussed above for the NOCTS dataset completeness evaluations with the exception that the second part was a 100% check and thus there is no confidence interval on the conclusions. The completeness check determined that the overall completeness was 2.31% missing data with a missing data rate of 1.41% before 1970 and a missing data rate of 12.08% after 1969. Only the

pre-1970 data are used for this co-exposure study. The details of the results of these evaluations are contained in Attachment A.

The accuracy of the neptunium logbook data entry effort was evaluated in accordance with ORAUT-RPRT-0078 [ORAUT 2016b]; the fields with the PRID and the numerical sample results were evaluated with a maximum 1% allowable error rate. The QA check resulted in a point estimate error rate of 0.67% with a 95% confidence interval of 0.45% to 0.96%. All fields were evaluated with a maximum 5% allowable error rate. The QA check resulted in a point estimate error rate of 0.86% with a 95% confidence interval of 0.38% to 1.67%. Therefore, the dataset passed the QA check. The details of the results of the evaluation are contained in Attachment A.

The neptunium WBC data for the co-exposure study was compiled from NOCTS data. The completeness and quality of this data source are addressed in Section 7.2.1.

7.3.8.2.2 Data Interpretation

The neptunium urinalysis data are gross alpha measurements after chemical separation of neptunium from other radionuclides and are assumed to be 100% ²³⁷Np.

WBC data from NOCTS were used for ²³⁷Np during the period for which urinalysis data are very limited (i.e., 1970 to 1989). Unlike ¹³⁷Cs, most WBC reports in NOCTS do not quantify ²³⁷Np or report an MDA in units of activity. However, some of the reporting methods provide sufficient information to determine or estimate the ²³⁷Np body content. Methods were developed to estimate ²³⁷Np for three of the different reporting forms used. These methods use the fact that an ROI used to report activity for radionuclides other than ²³⁷Np would also be reporting activity from ²³⁷Np or its decay product ²³³Pa. Protactinium-233 is assumed to be in equilibrium with ²³⁷Np for the basis of calculating chronic intakes with a minimum duration of 1 year.

The first form, "Whole Body Counter Data," was in use from approximately 1960 through the mid-1970s and was used with the 40-cm arc geometry [Taylor et al. 1995, p. 64]. Other than ¹³⁷Cs and ⁴⁰K, the amounts of radionuclides present are not quantified in units of activity. The results are presented as net cpm. This form reports activities for ¹³¹I based on the number of counts in the ROI from 300 to 400 keV. Protactinium-233 has several gammas that fall totally or partially in that energy range: 300 keV (6.6%), 312 keV (38.6%), 340 keV (4.5%), 375 keV (0.6%), and 399 keV (1.27%) [Kocher 1981]. The 300- and 399-keV peaks would fall half in and half out of the ROI, so in effect those abundances are only half of the stated values. Therefore, the total gamma abundance in the 300- to 400-keV ROI for ²³³Pa is 47.6%. It is possible to use the reported net cpm for ¹³¹I to estimate the ²³⁷Np body burden by assuming that ²³³Pa is in equilibrium with ²³⁷Np. The conversion factor from net counts in the ¹³¹I ROI to nanocuries of ²³⁷Np is 0.243 nCi/cpm. This conversion factor was determined by adjusting the ¹³⁷Cs calibration factor of 0.136 nCi/cpm [Watts 1962–1967, p. 33] for the gamma abundances of ¹³⁷Cs and ²³³Pa in their respective ROIs: (0.136)(0.85) ÷ 0.476. To refine the estimate, it is necessary to account for the Compton continuum contribution to the 131 ROI from the ⁴⁰K body burden. The ⁴⁰K contribution to the ¹³¹I ROI is 0.389 count per ⁴⁰K ROI net count [Watts 1962–1967, p. 33]. Therefore, the ²³⁷Np body burden can be calculated as:

$$nCi^{237}Np = 0.243 \times \left[\left(^{131}I \text{ net cpm} \right) - 0.389 \times \left(^{40}K \text{ net cpm} \right) \right]$$
 (7-1)

The second reporting form is untitled, and was used in the mid- and late 1970s. It is distinguishable by having the date, time, and name on successive lines on the left margin at the top. This form reports counts in the 300- to 400-keV ROI but does not associate this ROI with a particular radionuclide. For each ROI, gross, background, net, "CALC," and "DIFF" values are reported. The CALC and DIFF values correct the net counts to account for Compton scatter; the CALC value is the Compton scatter

contribution and the DIFF value is the net counts minus CALC. Therefore, when using these data, there is no need to apply a ⁴⁰K Compton scatter as with the "Whole-Body Counter Data" form. When the 40-cm arc geometry was being used, assumed to be in the period before February 1974, the ²³⁷Np body burden can be calculated as:

$$nCi^{237}Np = 0.243 \times (DIFF counts for 300-to-400-keV ROI)$$
 (7-2)

After January 1974, when the stretcher geometry was in use, the conversion factor changes [Fleming 1973–1979, p. 162] and the ²³⁷Np body burden can be calculated as:

$$nCi^{237}Np = 0.0125 \times (DIFF counts for 300-to-400-keV ROI)$$
 (7-3)

The third reporting form is the "In-Vivo Count Results" form, which was in use from the late 1970s through the late 1980s. The ROI on this form applicable to determining ²³⁷Np is the ⁵¹Cr ROI covering the energy range from 290 to 349 keV. This form also reports DIFF values. In addition to the DIFF value, it reports the MDA in units of both nanocuries and counts. Having the MDA reported in both units permits the determination of a count-specific conversion factor from counts to nanocuries. The remaining step is the ratio of the conversion factor for ⁵¹Cr to that for ²³³Pa, which is 0.211 (based on the ratio of gamma abundances in the ⁵¹Cr ROI: 0.098 to 0.465). The 0.469 abundance is based on 100% of the 312-keV gamma at 38.6% abundance, 95% of the 340-keV gamma at 4.5% abundance, and 55% of the 300-keV gamma at 6.6% abundance. Percentages are reduced from 100% to account for the fact that a portion of the gamma peak is outside of the ROI. Therefore, the ²³⁷Np body burden can be calculated as:

$$nCi^{237}Np = 0.211 \times \left(^{51}CR \ DIFF \ counts\right) \times \left(^{51}Cr \ MDA \ nCi\right) \div \left(^{51}Cr \ MDA \ counts\right)$$
 (7-4)

7.3.8.2.3 Data Exclusion

Individuals with intakes of actinides are sometimes treated by chelation to accelerate the excretion of the radionuclides. Bioassay data influenced by chelation treatment are not suitable for use in an internal dose co-exposure study due to the altered biokinetics during chelation treatment. A listing of individuals who received chelation at SRS was compiled from SRDB chelation records from REAC/TS (see Table B-1). Bioassay data for samples collected within 100 days after receiving chelation treatment were not used. In addition, samples marked as LIP, those marked DTPA to indicate chelation, and those that lacked sufficient identifying information (e.g., sample date or payroll ID number) were excluded.

The above discussion is a general summary of the method. The detailed statistical analysis instructions are in Attachment D.

7.3.8.3 Statistical Analysis

Statistical analysis of the neptunium bioassay data was performed in accordance with the current version of ORAUT-RPRT-0053 [ORAUT 2014a] using the TWOPOS method from that document and the multiple imputation method from ORAUT-RPRT-0096 [ORAUT 2021]. The data were analyzed on an annual basis except for the years indicated in Tables 7-15 and 7-16. Tables 7-15 and 7-16 provide the results of the statistical analysis. Box and whisker plots of the TWOPOS data are shown in Figures 7-36 through 7-39. The box and whisker plots are overlaid with the excretion results and whole body burdens predicted by the intake modeling as discussed further below. After 1969, insufficient urinalysis data were available for statistical analysis requiring the use of the WBC data. However, the urinary excretions predicted from the WBC based intakes are presented in Figures 7-40 and 7-41 overlaid with the box and whisker plots of the available urinalysis data. The supporting data

for these figures and tables are contained in ORAUT [2022] in the \statistics\ subfolder. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-15. Calculated 50th- and 84th-percentile urinary excretion rates of neptunium based on a lognormal fit to the TWOPOS data, 1961 to 1969 (dpm/d).^{a,b}

	nonCTW	nonCTW		nonCTW	CTW	CTW		CTW
Vacu	50th	84th	nonCTW	# of	50th	84th	CTW	# of
Year	percentile	percentile	GSD	individuals	percentile	percentile	GSD	individuals
1961	0.01002	0.0310	3.10	273	0.00957	0.0308	3.22	39
1962	0.00136	0.0164	12.01	784	0.00112	0.0132	11.85	152
1963	0.00087	0.0150	17.30	401	0.00144	0.0283	19.63	61
1964	0.04227	0.1129	2.67	41	N/A	N/A	N/A	7
1965	0.05684	0.1692	2.98	43	N/A	N/A	N/A	4
1966	0.09036	0.3286	3.64	27	N/A	N/A	N/A	5
1967	0.07637	0.2371	3.11	39	N/A	N/A	N/A	3
1968	0.04617	0.1142	2.47	60	N/A	N/A	N/A	8
1969	0.04560	0.1187	2.60	30	N/A	N/A	N/A	5

a. N/A = not applicable

Table 7-16. Calculated 50th- and 84th-percentile whole body burdens of neptunium based on a lognormal fit to the TWOPOS data. 1970 to 1989 (dpm).^a

	nonCTW	nonCTW		nonCTW	CTW	CTW		
	50th	84th	nonCTW	# of	50th	84th	CTW	CTW # of
Year ^b	percentile	percentile	GSD	individuals	percentile	percentile	GSD	individuals
1970	14,535	31,621	2.18	29				
1971	9,583	19,676	2.05	42	8,342	12,230	1.47	33
1972	7,038	13,615	1.93	131				
1973	5,042	10,322	2.05	171	4,702	10,450	2.22	30
1974	2,771	8,292	2.99	299	3,609	8,625	2.39	59
1975	1,001	4,888	4.88	379	1,223	5,661	4.63	84
1976	1,427	5,648	3.96	63	2.050	6 101	3.00	67
1977	1,687	5,961	3.53	216	2,058	6,184	3.00	07
1978	2,273	8,589	3.78	330	1,652	7,242	4.38	88
1979	969	4,562	4.71	213	635	4,446	7.01	53
1980	144	1,055	7.35	315	77	692	9.05	78
1981	140	899	6.44	352	173	840	4.86	88
1982	169	813	4.81	335	43	494	11.51	81
1983	110	832	7.54	276	94	753	7.99	85
1984	104	795	7.64	269	144	1,068	7.43	64
1985	167	984	5.88	209	159	828	5.21	53
1986	287	1,571	5.48	183	270	1,477	5.47	42
1987	431	2,034	4.72	216	650	3,079	4.74	37
1988	287	1,315	4.59	162	150	1 02/	10.00	45
1989	381	1,403	3.68	170	150	1,834	12.22	45

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

In Figures 7-36 and 7-37, the top line is the predicted excretion 84th percentile from all intakes. The bottom line is the predicted excretion GM from all intakes. In Figures 7-38 and 7-39, the top line is the predicted body content 84th percentile from all intakes. The bottom line is the predicted body content GM from all intakes. In Figures 7-40 and 7-41, the top line is the urinary excretion 84th percentile. The bottom line is the urinary excretion GM.

b. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

b. Where multiple years are noted for a single line of whole body burdens, the data for these years were combined for the statistical analysis.

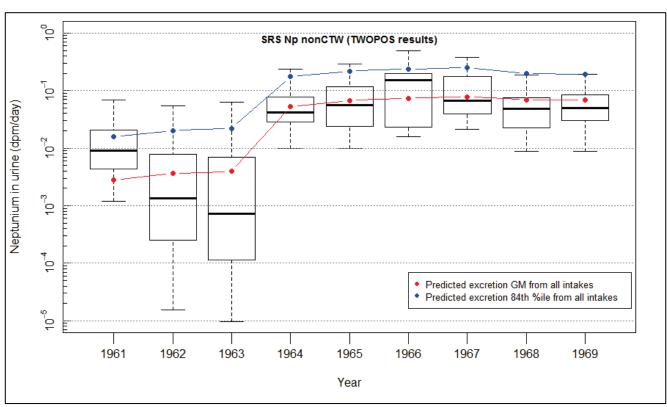


Figure 7-36. Neptunium urinalysis nonCTW TWOPOS data box and whisker plot.

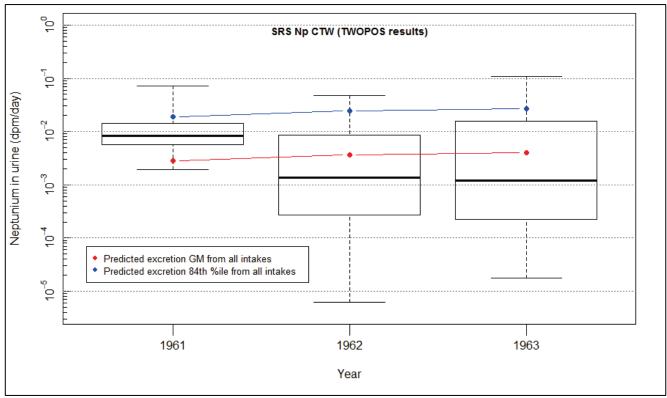


Figure 7-37. Neptunium urinalysis CTW TWOPOS data box and whisker plot. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

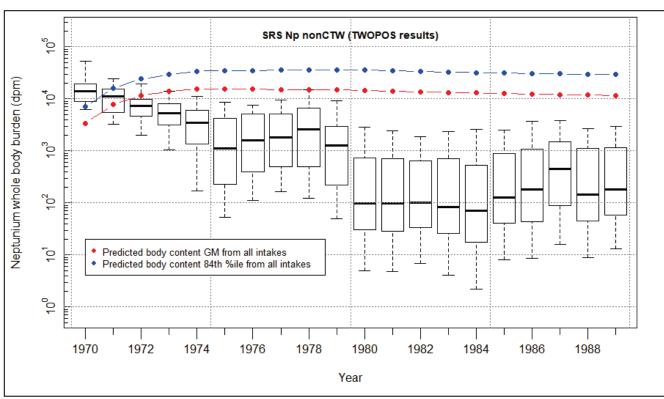


Figure 7-38. Neptunium whole body burden nonCTW TWOPOS data box and whisker plot.

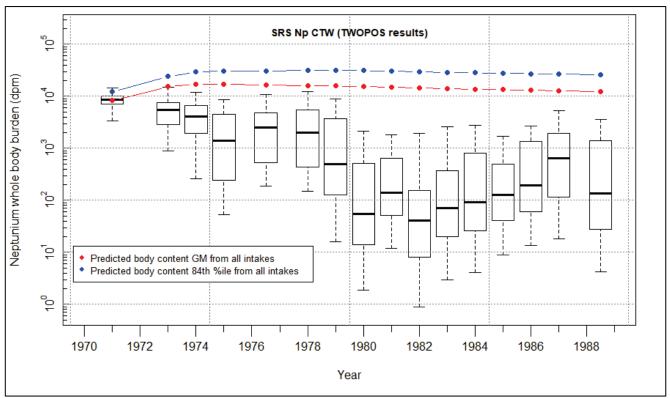


Figure 7-39. Neptunium whole body burden CTW TWOPOS data box and whisker plot. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

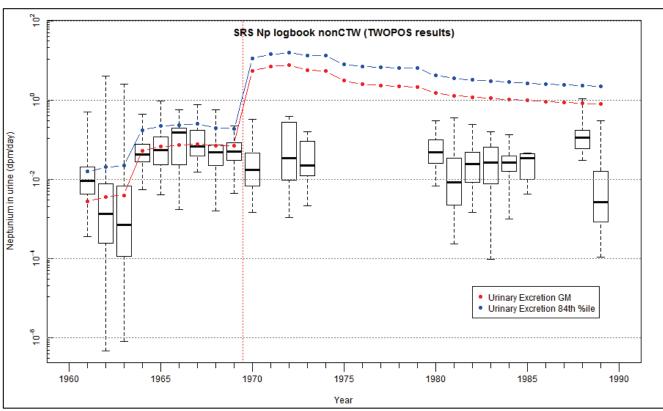


Figure 7-40. Neptunium urinalysis nonCTW TWOPOS data box and whisker plot, 1970 to 1989.

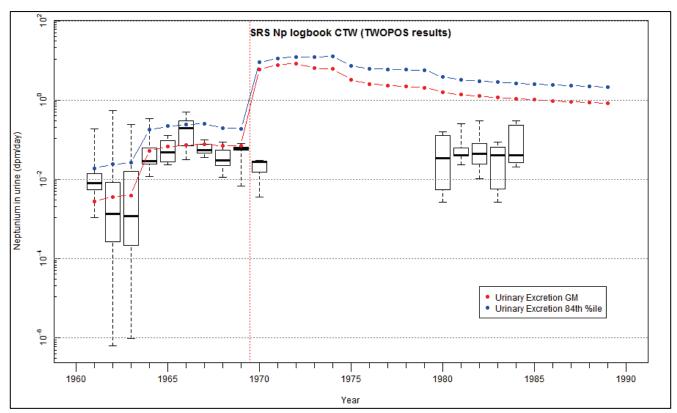


Figure 7-41. Neptunium urinalysis CTW TWOPOS data box and whisker plot, 1970 to 1989. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.8.4 Intake Modeling

Each result that was used in the intake calculations was assumed to have a normal distribution. A uniform absolute error of 1 was applied to all results, thereby assigning the same weight to each result. The IMBA program requires in vitro bioassay results to be in units of activity per day, so all urinalysis results were normalized as needed to 24-hour samples using 1,500 mL (the volume of urine assumed by SRS to be excreted in a 24-hour period).

Because of the nature of work at SRS, intakes could have been chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and to occur through inhalation with a default breathing rate of 1.2 m³/hr and a 5-µm activity median aerodynamic diameter particle size distribution.

IMBA was used to fit the bioassay results to a series of inhalation intakes. Data were fit as a series of chronic intakes. The intake assumptions were based on observed patterns in the bioassay data. Periods with constant chronic intake rates were chosen by the selection of periods in which the bioassay results were similar. A new chronic intake period was started if the data indicated a significant sustained change in the bioassay results. By this method, the years from 1955 through 1989 were divided into multiple chronic intake periods.

Because the neptunium isotopes at SRS have very long radiological half-lives, and because the material is excreted over long periods, excretion results are not independent. For example, an intake in the 1950s could have contributed to urinary excretion in the 1980s and later. However, because of turnover in the workforce, the workers used to assess intakes in one period might not have been the same as those in a later period. To avoid potential underestimation of intakes in the later periods, each chronic intake was fit independently using only the bioassay results from the single intake period. This method resulted in an overestimate of the later TWOPOS results when the cumulative predicted urine sample results from multiple assumed intake periods are plotted. Only the results during the intake period were selected for use in the fitting of each period. Excluded results are shown as an "X" in the figures in Attachment E; included results are shown as dots. The results of the statistical analysis that was used to calculate the intakes are provided for neptunium in Tables 7-15 and 7-16.

Excluded results are shown as an "X" in the figures in Attachment E; included results are shown as dots. The solid lines in Figures E-155 to E-178 in Attachment E show the individual fits to the 50th-and 84th-percentile excretion rates for nonCTWs and CTWs. Figures E-179 to E-186 show the 50th-and 84th-percentile predicted excretion rates, respectively, from all intakes for nonCTWs and CTWs. Tables E-23 and E-24 list the 50th- and 84th-percentile intake rates with the associated GSDs from the neptunium urinalysis for nonCTWs and CTWs.

Figures 7-36 and 7-37 overlay the urinary excretion rates (lines) predicted by the intake modeling on the box and whisker plots of the TWOPOS data. Figures 7-38 and 7-39 overlay the whole body contents (lines) predicted by the intake modeling on the box and whisker plots of the TWOPOS data.

There is not enough CTW data from 1964 through 1969 to perform statistical analysis or intake modeling. Therefore, the nonCTW intakes for this period were used as a surrogate due to the similarity of the nonCTW and CTW intake rates before and after this period. Figures 7-40 and 7-41 depict the nonCTW-data based predicted urinary excretion rates in comparison to the limited CTW available. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.3.9 Thorium

By 1990, thorium in urine was quantified by an offsite vendor [WSRC 1990]. However, the analytical techniques SRS used for americium before 1990 also captured thorium [NIOSH 2012; Butler and Hall 1970; Taylor et al. 1995]. Butler [1964] indicates an extraction efficiency of 93% for thorium into 20% HDEHP-toluene. An extraction efficiency of 97% with the TIOA-DDCP technique [Butler and Hall 1970] was reported. DDCP extracts all the alpha-emitting actinides from thorium through einsteinium from the sample. The extraction efficiency for the various actinides is given in Table 7-17. For practical use at SRS, the plutonium, uranium, and neptunium would be stripped first to permit separation of the americium, californium, and curium.

Table 7-17. Extraction efficiencies with DDCP [Butler and Hall 1970].

Element	Principal valence	Extracted %
Ca	2	<1
Cs	1	<1
Fe	3	95
Pm	3	99
Ce	3	99
Th	4	97
U	6	82
Np	5	92
Pu	4	98
Am	3	95
Cm	3	95
Bk	3	98
Cf	3	95
Es	3	97

The TIOA-DDCP method provides a simple, accurate method for quantitative determination of actinides (Figures 7-42 and 7-43). TIOA is used to extract the plutonium, uranium, and neptunium from the sample in an 8N HCl solution. Next, a sequence of nitric acid dissolution steps is performed followed by the use of DDCP to separate the remaining actinides. Toluene is used to return the actinides to the aqueous phase, which is then evaporated to dryness and counted. Separation of the thorium, berkelium, and einsteinium from the americium, curium, and californium was not done because they "are not present in biological samples in sufficient quantities to require separation or routine identification by alpha spectroscopy" [Butler and Hall 1970]. However, if present, they would continue with the americium, curium, and californium. This is shown graphically in Figure 7-42. Thorium was also noted as being included in the americium, curium, and californium determination in 1987 [DuPont 1987, p. 60] as shown in Figure 7-43. Therefore, although not originally intended to measure thorium, the analytical technique for americium measurement would also capture any thorium present in the sample and establish an upper bound on the amount of thorium present.

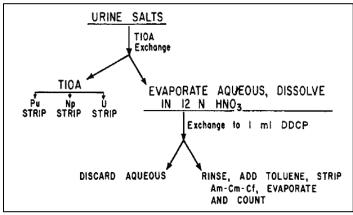


Figure 7-42. TIOA-DDCP sequential stripping process [Butler and Hall 1970].

DO NOT REMOVE From SRP Without Approval HEALTH PROTECTION DEPARTMENT DPSOP Ref 47

DPSQL 47-206 Revision 1 Approval uate 5/21/87 Page 1 of 6

AMERICIUM-CURIUM-CALIFORNIUM, PLUTONIUM, NEPTUNIUM, ENRICHED URANIUM SEQUENTIAL DETERMINATIONS

PURPOSE:

To sequentially determine the concentration of americium-curium-californium, plutonium, neptunium, and enriched uranium in urine.

PRINCIPLE, LIMITATION, PRECISION:
This procedure utilizes liquid ion exchange in the determination of the concentration of six actinides. Plutonium, neptunium, and uranium are exchanged to TIOA (tri-isooctylamine) and are removed individually from the organic depending on the strip solution used. Americium, curium, and californium are extracted from the aqueous with bidentate (dibutyl N, N-diethyl carbamylphosphonate).

The urine sample (250 mL) is wet-ashed. The salts are dissolved in 8N hydrochloric acid and then extracted with 10% TIOA-xylene. The organic is washed with 8N hydrochloric and plutonium is stripped with 80°C 8N HC1-0.05M NH4I; neptunium is stripped with 4N HC1-0.02N HF; enriched uranium is stripped with O.lN HCl. The residual 8N HCl and rinse of the TIOA are wet ashed. The salts are dissolved in 12N HNO3 and then extracted with bidentate. Nitric acid (2N) is used to back-extract the remaining actinides from the bidentate. The strip solutions are evaporated, plancheted, and counted in solid state counters.

The procedure has a minimum sensitivity of 0.1 d/m/1.5 liters for plutonium and neptunium and 0.3 d/m/1.5 liters for enriched uranium and americium-curium-californium.

Precision (at the 95% confidence level): Am-Cm: ±19% at the 6 pCi/l.5 liter level. Pu: ±49% at the 0.4 pCi/1.5 liter level. U: ±41% at the 5 pCi/l.5 liter level.

Limitation:

Thorium will be included in the Am-Cm-Cf determination, but it is not normally present in significant quantities.

Figure 7-43. Sample analysis procedure for extracting americium, curium, californium, plutonium, neptunium, and EU [DuPont 1987].

Therefore, the americium bioassay data discussed in Section 7.3.1 were also used to model thorium intakes from November 1, 1972, through May 31, 1980. Separate intake modeling was performed for thorium due to the differing biokinetics of thorium in comparison with americium. The intake rates start on November 1, 1972, because an SEC class covers ²³²Th exposures before October 1972.

Because of the nature of work at SRS, intakes could have been chronic or acute. However, a series of acute intakes can be approximated as a chronic intake. Therefore, intakes were assumed to be chronic and to occur through inhalation with a default breathing rate of 1.2 m³/hr and a 5-µm activity median aerodynamic diameter particle size distribution. IMBA was used to fit the bioassay results to an inhalation intake. Only the results during the intake period were selected for use in the fitting.

The solid lines in Figures E-187 to E-194 in Attachment E show the fits to the 50th- and 84th-percentile excretion rates for Type M and S for nonCTWs and CTWs. Tables E-25 and E-26 list the 50th- and 84th-percentile intake rates with the associated GSDs from the neptunium urinalysis for nonCTWs and CTWs. Although included in the source data, the results for CTWs do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Beginning June 1, 1980, thorium intakes are assigned based on the guidance ORAUT-RPRT-0070 [ORAUT 2017c] which assigns intake rates of 4.87 dpm/d from inhalation and 0.1 dpm/d from ingestion.

7.4 GUIDANCE FOR DOSE RECONSTRUCTORS ON ASSIGNMENT OF INTAKES AND DOSES

This section describes the derived intake rates and provides guidance for assigning doses. For the calculation of doses to individuals from bioassay data, a minimum GSD of 3 has been used to account for biological variation and uncertainty in the models. It was considered inappropriate to assign a value less than 3 for the co-exposure data. Therefore, a GSD of at least 3 was assigned for each intake period. The 95th-percentile values were based on the adjusted GSD for the intake period. The original GSDs are provided in the Attachment E tables for each element. For input into the Interactive RadioEpidemiological Program (IREP), the 50th percentile of the calculated intake rates should be assigned as a lognormal distribution with the associated GSDs in the tables in this section to the majority of workers for whom co-exposure intakes are assigned as the default assumption. For cases in which there is justification that the individual could have had intakes larger than the 50th percentile, dose reconstructors should use the 95th-percentile intake rates input into IREP as a constant.

Radiological controls improved in the later years and the detection limits for radionuclides dropped, both of which tend to result in the calculated radionuclide intake rates decreasing. Therefore, the intake rates or dose for the last year listed may be extended to subsequent years as a measure favorable to claimants.

The following sections list the intake rates that should be used for each radionuclide and the period of applicability of each intake rate except for tritium. For tritium, the actual dose that should be used is provided. Co-exposure intakes should be assigned for radionuclides that could have been present at the worker's location and for which the worker was not monitored. Table 7-18 lists the radionuclides potentially present at various SRS facilities or to which a worker who was assigned to a particular facility might have been exposed. Most radionuclides apply to the entire duration of the facility's existence; a few radionuclides apply to limited periods as noted in the table [ORAUT 2013a]. The dosimeter codes applicable to various periods are included to help identify an individual's work location. However, the dosimeter codes are guidance only and claimant-specific information (e.g., telephone interview statements, incident reports, and DOL claim file information) supersedes the guidance provided by the dosimeter codes.

Table 7-18. Radionuclides of concern potentially present at SRS facilities [ORAUT 2023].
--

Building or facility	Dosimeter codes ^a 1959–1972	Dosimeter codes ^a 1973–08/16/1990	Dosimeter codes ^a 08/17/1990–2003	Dosimeter codes ^a 2004-present	Radionuclides of concern ^{b,c}
Reactors (R, P, L, K, C)	7A, 8A, 9A, 10A, 11A	1C, 3C, 4C, 6C, 1K, 1P, 1L, 1R	C01, C03 (C04, C06 until 01/29/1992), K01, L01, P01, (R01 until 01/29/1992)	LLL, NMM, SDD ^d	H-3, FP, Pu, DU (1955°–1988), EU (1954°–1988), NU (12/1953°–1967)
F-Area unknown facility	1A	1F 2F	F01, F02	235, CLB, FBL, FCA	Pu, FP, DU (1955°–2006)
F-Area A-Line	1A	See 221-F Canyon	See 221-F Canyon	FCA	FP, DU (1955°–2006)
221-F B-Line (FB- and JB-Lines)	1A	1F, 2F	F01, F02	FBL	Pu
221-F Canyon	1A	1F, 2F	F01, F02	FBL, FCA	Pu, FP, DU (1955e-2006)
MPPF (in 221-F)	1A	1F, 2F	F01, F02	FCA (F-Canyon through 2006)	Pu, Am
F-Area Outside Facilities	1B	9F	F09	FCA	Pu, FP, DU (1955e-2006)
²³⁸ PuO ₂ Fuel Form Facility and ²³⁸ PuO ₂ Experimental Facility (235-F)	1A, 1F	1F, 2F, 8F	F01, F02, F08	235	Pu (through 2006), Np (1962–1983), Th (1975–1981)
235-F Vaults	1A	1F, 2F, 8F	F01, F02, F08	235	Pu (through 2006), DU (1955°-present), Np (1962-1983), Th (1975-1981)
772-F and 772-1F Laboratories	1A	1A	A01	CLB	Pu, DU (1955°–2021), EU (05/1959 ^f –2021), U-233 ^g (1964–1969), TRM (2017–2020) ^h
F/H Tank Farms	None	5F, 5H (235-F construction, 200-H S Gate construction)	F05, H05 (235-F construction, 200-H South Gate construction)	FTF, HTF	Pu, FP
Effluent Treatment Facility (241-84H), Cooling Water and Retention Basins, 241-102H, 7H/H07	None	3F, 5F, 1H, 3H, 5H (200-F, 200-H South Gate construction)	F03, F05, H01, H03, H05	EPT	Pu, FP
H-Area unknown facility	2A	1H through 4H, 7H	H01 through H04, H07	299, HBL, HCA, EPT, HTF	Pu, Np, DU (1955d-present)

Building or facility	Dosimeter codes ^a 1959–1972	Dosimeter codes ^a 1973–08/16/1990	Dosimeter codes ^a 08/17/1990–2003	Dosimeter codes ^a 2004–present	Radionuclides of concern ^{b,c}
Old HB-Line Facility (221-H) (through 1983)	2A	1H, 2H	H01, H02	HBL	Pu (1963–1983 for Pu-238 insoluble), Np (1962–1983), DU (1955e–present), EU (05/1959f–present), U-233g (1964–1969), TRM (2017–2020)h
New HB-Line Facility (1985–2011)	None	1H, 2H (1985– 08/16/1990)	H01, H02	HBL	Pu (1985–2011 for Pu-238 insoluble), Np (1985–2011), EU (05/1959 ^f –present)
H-Canyon and A-Line	2A	1H, 2H	H01, H02	HCA	Pu, FP, Np, EU (05/1959 ^f –present), U-233 (1964–1969), TRM (2017–2020) ^h
221-H Area Outside Facilities	2A	1H, 2H	H01, H02	HCA	Pu, FP, Np EU (05/1959 ^f –present),
232-H, 234-H, H Area New Manufacturing Facility, H Area Old Manufacturing Facility, Tritium complex	2A (200-H)	2H, 4H	H02, H04	TEF, TRI	H-3, Zn-65
320-M, 321 M-Area, M Area unknown facility	3A	3M	M03	No active codes, SDDdc	DU (1955°-1988), EU (05/1959f-present), NU (12/1953b-1967), Th (10/01/1972), Pu (1963-1965, 1968- 1970, 1975, and 1979- 1980 only), Np (1961-1998 only)
704-U, 704-B	None	None	None	No active codes	FP
723-A, 773-A	6N, 5A	7L, 5A	A27, A15	SRE, SRT	Pu, Am, Cm, Cf, FP, H-3, Th (after 10/01/1972), Np (1957–present), DU (1955e–present), EU (5/1959f–present), U-233g (1964–1969), TRM (2017–2020)g

Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 93 of 297

Building or facility	Dosimeter codes ^a 1959–1972	Dosimeter codes ^a 1973–08/16/1990	Dosimeter codes ^a 08/17/1990–2003	Dosimeter codes ^a 2004–present	Radionuclides of concern ^{b,c}
735-A and 735-11A	6F	5D	A16	SRT (apply 773-A intakes)	Pu, Am, Cm, Cf, FP, H-3, Th (after 10/01/1972), Np (1957–present), DU (1955e–present), EU (05/1959f–present), TRM (2017–2020)g
776-A ⁱ Used 773-A Codes	5A (773-A)	5A (773-A)	A15 (773-A)	SRT (apply 773-A intakes)	Pu, Am, Cm, Cf, FP, H-3, Th (after 10/01/1972), Np (1957–present), DU (1955e–present), EU (05/1959f–present), U-233g (1964–1969), TRM (2017–2020)g
777-M (Standard Pile, Nuclear Test Gauge) ⁱ	5B	5B	A33	SRT	FP, Th (1954–1984), Np (1955, 1965–1968), DU (1955°–1988), EU (1968–1988), NU (12/1953°–1967)
CMX (679-T) 09/01/1951–1983) and TNX (12/10/1951–09/2004) (Semi-works facilities) ^j	5C	5C	T01	No active codes	DU (1955°-1988 TNX only) ^k , EU (1968-1988)
D-Area	4A	4D	D04	SDD	H-3 (through 1999), FP (through 1999)
E-Area Solid Waste Disposal Facility (643-G Burial Grounds), 618-G Class, Yard)	12A	12B, 4F, 3G, 8G	B12, G03, F04, G08	SWM	H-3, Pu, Cm, FP
Receiving Basin for Off-Site Fuel and Resin Regeneration Facility	See H-Area unknown facility	See H-Area unknown facility	See H-Area unknown facility	RBO	Pu, FP
S-Area Defense Waste Processing Facility (start 1996	None	2W (cannot find in code list)	S02 (cannot find in code list)	SSS	Pu, FP
Waste Certification Facility (724- 8E and WCF Building) (start 12/1986)	None	None (643-G Burial Grounds)	None (643-G Burial Grounds)	SSS	H-3, Pu, Cm, FP

Building or facility	Dosimeter codes ^a 1959–1972	Dosimeter codes ^a 1973–08/16/1990	Dosimeter codes ^a 08/17/1990–2003	Dosimeter codes ^a 2004–present	Radionuclides of concern ^{b,c}
Z-Area (start 1990)	None	2Z	Z02	ZZZ	FP, Pu
Not identifiable or unknown ^l	None	None	None	Blank, any code not already listed	Pu, FP, H-3, Am, Cm, Cf, Np, Th (after 10/01/1972), DU (1955e-present), EU (05/1959f-present), U-233 (1964-1969), NU (12/1953b-1967), TRM (2017-2020)h
Central Shops and Maintenance, Pittsburgh Testing Laboratory, includes CTW-specific HPA Area codes ^m	1Z, 6C, 6H, 6I, 6M, 6N, 6R, 12D, 12E, 12I, 12Z	1A, 5F, 5H, 5J, 5W, 6B, 6H, 6W, 7A, 7B, 7G, 7I, 7J, 7K, 7L, 7M, 7N, 7R, 7T, 7Q, 7W, 7Y, 8A through 8C, 8H through 8M, 8P, 8S, 8T, 1N	A18, A12, A24, A25, A26, A27, A29, A34, F05, H05, H06, J01 through J08, J10, J12 through 41, Y01	No active codes	Pu, FP, H-3, Am, Cm, Np, Th (after 10/01/1972), DU (1955e-present), EU (05/1959f-present), NU (12/1953b-1967), U-233 (1964-1969)

- Source: ORAUT [2014c]. Any code with an "X" should not be included. These indicate offsite assignment.
- b. DU/EU indicate which recycled components to use, either DU for depleted uranium components or EU for enriched uranium components (per Table 5-30). See ORAUT-TKBS-0003-2 [ORAUT 2024a] and ORAUT-TKBS-0003-5 [ORAUT 2024b] for radionuclides of concern; periods of applicability in parenthesis.
- c. Source: ORAUT [2024a].
- d. Code SDD is used both for the reactors and for 300-M Area. If no other information about work location is available, the applicable radionuclides for both locations should be assigned.
- e. Received EU, DU, and NU from Y-12 Plant and Feed Materials Production Center. NU shipments began in 1953, DU shipments from SRS began in 1955, and EU shipments began in 1954 [McCarty 2000, pp. 73, 75, 84–85]; manufactured uranium into fuel elements and into target elements [WSRC 2006, p. 42].
- f. Separated plutonium from EU after May 1959 using HM process [Reed et al. 2013, p. 195],
- g. U-232/233 should only be assigned for 772-F, Old HB-Line, 773-A, 723-A, 735-A, 735-A, 735-A and 776-A for January 1, 1964, through December 31, 1969. Thorium oxide irradiation to produce 130 kg of U-233 began in 1964 [DuPont 1984a, p. 94]. The Thorex IIB campaign in the plant was completed in 1969 with the recovery of 181 kg of U-233 [DuPont 1984b, p. 193]. 772-F and 772-1F ended operations in 2021 [ORAUT 2024a, Table 2-21].
- h. TRM = target residual material; a term for uranium remaining from extractions of Mo-99 irradiated targets from a non-SRS facility between 2017 and 2020 (NNSA 2021, p. 3).
- i. Contained the Physics Laboratory with three test reactors: the Process Development Pile, the Standard Pile, and the Subcritical Experiment test reactors that were used to test the fuel and targets manufactured in the 300 Area [WSRC 2006, pp. 37, 48, 113]. The reactors in 777-M were effectively shut down in the 1980s after most of their functions had been assumed by computer modeling [Strack 2002, p. 413].
- j. Process pilot plants that tested fuel and target elements. TNX construction began in May 1951, and was completed by the following fall. The first uranium had been introduced and pilot runs began December 10, 1951 [Strack 2002, p. 417]. TNX has continued to serve as a pilot plant for operations in the F and H Areas [Strack 2002, p. 418]. CMX construction began in April 1951, and the facility was turned over to operations in September of the same year [Strack 2002, p. 413]. After 1983, the testing of new fuel and target elements was moved from CMX to Savannah River Laboratory [WSRC 2006, p. 48].
- k. Irradiated DU targets to make plutonium [Reed et al. 2013, p. 185].
- I. Unknown facility radionuclides should only be assigned if no information is available from any source about the worker's work location.
- m. CTW might have worked anywhere on site. Ford Building at Central Shops used to repair contaminated reactor heat exchangers since at least 1961 and the mid-1980s [DuPont 1961, p. 282].

If the work location is unknown, the radionuclides listed for "not identifiable or unknown" (the last line in Table 7-18) should be assigned. This might especially apply to Maintenance Department workers sent from the Central Shops area to a variety of work locations and any other workers who worked in multiple facilities.

The CTW intake rates listed in this section cannot be applied to subcontractor CTWs (i.e., CTWs excluding employees of the following prime contractors who worked at the Savannah River Site in Aiken, South Carolina, during the specified time periods: E. I. du Pont de Nemours and Company, October 1, 1972, through March 31, 1989; and Westinghouse Savannah River Company, April 1, 1989, through December 31, 1990, between October 1, 1972, and December 31, 1990). Outside of this time period, the CTW intake rates may be applied to any CTW, whether employed by the prime contractor or a subcontractor.

7.4.1 Americium

Tables 7-19 and 7-20 list the ²⁴¹Am intakes and associated GSDs to be used for each year of potential americium exposure for nonCTWs and CTWs respectively. The ²⁴¹Am bioassay also detected ²⁴⁴Cm and ²⁵²Cf. When intakes of more than one of ²⁴¹Am, ²⁴⁴Cm, and ²⁵²Cf are possible for the facility that the person worked at as shown in Table 7-18, each applicable radionuclide should be evaluated using the ²⁴¹Am intake rates below and the radionuclide with the highest dose used. The intake rates ending on 12/31/1989 in these tables may be extended to later years including for best estimates.

Table 7-19. nonCTW type M ²⁴¹Am intake rates (dpm/d).

	• •	nonCTW	nonCTW	nonCTW
Start	End	50th percentile	GSD	95th percentile
01/01/1963	12/31/1965	31.32	3.38	232
01/01/1966	12/31/1967	57.61	3.00	351
01/01/1968	12/31/1971	16.86	3.00	102.7
01/01/1972	12/31/1982	2.61	3.13	17.0
01/01/1983	12/31/1989	7.359	3.00	44.8

Table 7-20. CTW type M ²⁴¹Am intake rates (dpm/d).^a

		CTW	CTW	CTW
Start	End	50th percentile	GSD	95th percentile
01/01/1966	12/31/1967	61.38	3.32	442
01/01/1968	12/31/1971	17.33	3.00	106
01/01/1972	12/31/1982	2.697	3.22	18.5
01/01/1983	12/31/1989	8.248	3.00	50.3

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.4.2 Tritium

Table 7-21 lists the tritium doses and GSDs to be used for each year of potential tritium exposure. The doses for 1990 in this table may be assigned to later years including for best estimates.

Table 7-21. Tritium annual doses (rem) and GSDs.^a

100101	nonCTW	nonCTW	nonCTW	CTW	CTW	CTW
Year	50th percentile		95th percentile		GSD	95th percentile
1954	0.012	3.00	0.073	0.012	3.00	0.071
1955	0.013	3.00	0.080	0.015	3.00	0.093
1956	0.019	3.00	0.116	0.016	3.00	0.100
1957	0.025	3.00	0.151	0.025	3.00	0.154
1958	0.035	3.00	0.215	0.031	3.00	0.190
1959	0.034	3.02	0.208	0.038	3.00	0.232
1960	0.046	3.18	0.306	0.042	3.06	0.264
1961	0.050	3.00	0.304	0.039	3.36	0.284
1962	0.051	3.00	0.313	0.041	3.00	0.251
1963	0.048	3.00	0.295	0.040	3.00	0.242
1964	0.060	3.01	0.368	0.054	3.00	0.329
1965	0.055	3.37	0.403	0.043	3.00	0.261
1966	0.046	3.00	0.281	0.031	3.12	0.200
1967	0.049	3.00	0.301	0.034	3.00	0.208
1968	0.051	3.00	0.310	0.030	3.00	0.182
1969	0.052	3.00	0.315	0.031	3.24	0.215
1970	0.042	3.00	0.258	0.023	3.49	0.180
1971	0.051	3.00	0.308	0.028	3.32	0.204
1972	0.047	3.00	0.286	0.033	3.33	0.238
1973	0.045	3.00	0.276	0.027	3.50	0.212
1974	0.048	3.00	0.293	0.031	3.33	0.227
1975	0.048	3.00	0.294	0.032	3.00	0.196
1976	0.047	3.00	0.285	0.030	3.26	0.207
1977	0.053	3.00	0.326	0.026	3.37	0.192
1978	0.048	3.00	0.295	0.028	3.00	0.168
1979	0.047	3.00	0.286	0.029	3.00	0.179
1980	0.049	3.00	0.300	0.024	3.00	0.147
1981	0.031	3.00	0.188	0.016	3.00	0.100
1982	0.027	3.00	0.164	0.015	3.00	0.093
1983	0.022	3.00	0.135	0.016	3.00	0.095
1984	0.023	3.00	0.138	0.015	3.00	0.093
1985	0.025	3.00	0.150	0.016	3.00	0.095
1986	0.008	3.32	0.061	0.006	3.17	0.043
1987	0.008	3.08	0.052	0.007	3.12	0.045
1988	0.008	3.00	0.047	0.006	3.52	0.050
1989	0.006	3.00	0.036	0.004	3.07	0.027
1990	0.006	3.00	0.034	0.006	3.00	0.036

These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.4.3 **Plutonium**

Tables 7-22 through 7-24 list the plutonium gross alpha intakes and associated GSDs to be used for each year of potential plutonium exposure for nonCTWs and CTWs. Use the isotopic composition from Table 5-4 of ORAUT-TKBS-0003-5, Savannah River Site – Occupational Internal Dose [ORAUT 2024b]. The intake rates ending on 12/31/1990 in these tables may be extended to later years including for best estimates.

Document No. ORAUT-TKBS-0003-7	Revision No. 00	Effective Date: 03/05/2024	Page 98 of 297

Table 7-22. Type M plutonium gross alpha intake rates (dpm/d).^a

		nonCTW		nonCTW	CTW		CTW
		50th	nonCTW	95th	50th	CTW	95th
Start	End	percentile	GSD	percentile	percentile	GSD	percentile
01/01/1955	12/31/1960	3.265	3.00	19.90	2.706	3.14	17.74
01/01/1961	12/31/1966	1.606	4.02	15.83	1.356	4.34	15.19
01/01/1967	12/31/1970	5.778	3.49	45.17	5.279	3.70	45.49
01/01/1971	12/31/1981	1.692	4.54	20.37	1.379	4.59	16.91
01/01/1982	12/31/1990	0.7238	6.94	17.5	0.5974	7.78	17.5

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-23. Type S plutonium gross alpha intake rates (dpm/d).^a

		nonCTW		nonCTW	CTW		CTW
		50 th	nonCTW	95th	50th	CTW	95th
Start	End	percentile	GSD	percentile	percentile	GSD	percentile
01/01/1955	12/31/1960	66.17	3.07	417.98	54.76	3.27	383.92
01/01/1961	12/31/1966	36	3.94	343.71	30.63	4.21	325.69
01/01/1967	12/31/1970	154.5	3.39	1,152.33	142.5	3.61	1,177.28
01/01/1971	12/31/1981	27.02	4.56	328.24	22.13	4.55	267.15
01/01/1982	12/31/1990	12.56	6.64	283.0	10.41	7.41	280.7

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-24. Type SS plutonium gross alpha intake rates (dpm/d).^a

		nonCTW		nonCTW	CTW		CTW
		50th	nonCTW	95th	50th	CTW	95th
Start	End	percentile	GSD	percentile	percentile	GSD	percentile
01/01/1955	12/31/1960	454	3.00	2,766	377	3.13	2,463
01/01/1961	12/31/1966	222	4.02	2,192	188	4.33	2,095
01/01/1967	12/31/1970	787	3.52	6,237	719	3.71	6,223
01/01/1971	12/31/1981	230	4.52	2,752	188	4.58	2,297
01/01/1982	12/31/1990	99	6.94	2,397	81.6	7.79	2,391

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.4.4 <u>Uranium</u>

Tables 7-25 to 7-30 list the total uranium intakes, assigned as ²³⁴U intakes and associated GSDs to be used for each year of potential uranium exposure for nonCTWs and CTWs. Recycled uranium contaminants should be assigned with uranium starting in 1961 and forward. The intake rates ending on 12/31/1990 in these tables may be extended to later years including for best estimates.

In Building 773-A from January 1, 1961, through September 30, 1972, and in Building 772-F and the HB-Line from January 1, 1964, through September 30, 1972, ²³³U production resulted in potential exposure to ²³³U containing 8 ppm ²³²U. For workers in those areas and periods, use the intakes in Tables 7-31 through 7-36 [2].

Table 7-25. nonCTW type F ²³⁴U intake rates (dpm/d).

	7.	nonCTW	,	nonCTW
		50th	nonCTW	95th
Start	End	percentile	GSD	percentile
01/01/1953	12/31/1953	36.19	3.00	220.5
01/01/1954	12/31/1954	14.27	3.00	86.95
01/01/1955	12/31/1956	7.095	3.00	43.23
01/01/1957	12/31/1962	1.035	5.47	16.92
01/01/1963	12/31/1967	2.366	5.82	42.89
01/01/1968	12/31/1981	0.6054	4.59	7.42
01/01/1982	12/31/1985	1.556	3.81	14.05
01/01/1986	12/31/1990	0.646	3.23	4.45

Table 7-26. nonCTW type M ²³⁴U intake rates (dpm/d).

		nonCTW 50th	nonCTW	nonCTW 95th
Start	End	percentile	GSD	percentile
01/01/1953	12/31/1953	175.1	3.00	1,067
01/01/1954	12/31/1954	40.67	3.00	247.8
01/01/1955	12/31/1956	26.46	3.00	161.2
01/01/1957	12/31/1962	3.651	6.26	74.63
01/01/1963	12/31/1967	9.768	5.86	179
01/01/1968	12/31/1981	2.426	4.44	28.12
01/01/1982	12/31/1985	6.469	3.84	59.20
01/01/1986	12/31/1990	2.513	3.19	16.94

Table 7-27. nonCTW type S ²³⁴U intake rates (dpm/d).

		nonCTW		nonCTW
		50th	nonCTW	95th
Start	End	percentile	GSD	percentile
01/01/1953	12/31/1953	5,477	3.00	33,373
01/01/1954	12/31/1954	2,222	3.00	13,539
01/01/1955	12/31/1956	826.2	3.00	5,034
01/01/1957	12/31/1962	81.69	5.12	1,199
01/01/1963	12/31/1967	185.7	5.75	3,300
01/01/1968	12/31/1981	36.33	4.20	385.1
01/01/1982	12/31/1985	133.8	4.00	1,307
01/01/1986	12/31/1990	53.03	3.24	366.0

Table 7-28. CTW type F ²³⁴U intake rates (dpm/d).^a

		CTW 50th	CTW	CTW 95th
Start	End	percentile	GSD	percentile
01/01/1955	12/31/1956	7.243	3.00	44.13
01/01/1957	12/31/1957	0.7962	12.71	52.16
01/01/1958	12/31/1962	0.7962	4.06	7.98
01/01/1963	12/31/1967	2.124	6.18	42.46
01/01/1968	12/31/1990	0.6529	4.08	6.59

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-29. CTW type M ²³⁴U intake rates (dpm/d).^a

		CTW 50th	CTW	CTW 95th
Start	End	percentile	GSD	percentile
01/01/1955	12/31/1956	32.09	3.00	195.5
01/01/1957	12/31/1957	2.349	18.77	292.3
01/01/1958	12/31/1962	2.349	4.98	32.96
01/01/1963	12/31/1967	8.923	6.19	179.0
01/01/1968	12/31/1990	2.625	3.98	25.43

These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-30. CTW type S ²³⁴U intake rates (dpm/d).^a

Start	End	CTW 50th percentile	CTW GSD	CTW 95th percentile
01/01/1955	12/31/1956	821.4	3.00	5,005
01/01/1957	12/31/1957	53.65	18.19	6,338
01/01/1958	12/31/1962	53.65	4.46	626.9
01/01/1963	12/31/1967	176.2	6.00	3,356
01/01/1968	12/31/1990	35.68	3.97	344.5

These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-31. Type F ²³³U nonCTW intake rates (dpm/d).

		U-232	U-233		U-232	U-233
Start	End	50th percentile	50th percentile	GSD	95th percentile	95th percentile
01/01/1961	12/31/1962	0.0176	1.017	5.47	0.288	16.64
01/01/1963	12/31/1967	0.0402	2.326	5.82	0.729	42.16
01/01/1968	12/31/1969	0.0103	0.595	4.59	0.126	7.30

Table 7-32. Type M ²³³U nonCTW intake rates (dpm/d).

		U-232	U-233		U-232	U-233
Start	End	50th percentile	50th percentile	GSD	95th percentile	95th percentile
01/01/1961	12/31/1962	0.062	3.59	6.26	1.27	73.36
01/01/1963	12/31/1967	0.166	9.60	5.86	3.043	175.96
01/01/1968	12/31/1969	0.041	2.385	4.44	0.48	27.65

Table 7-33. Type S ²³³U nonCTW intake rates (dpm/d).

		U-232	U-233	U-233		U-233
Start	End	50th percentile	50th percentile	GSD	95th percentile	95th percentile
01/01/1961	12/31/1962	1.39	80.3	5.12	20.4	1,179
01/01/1963	12/31/1967	3.157	182.5	5.75	56.113	3,245
01/01/1968	12/31/1969	0.62	35.71	4.20	6.55	378.6

Table 7-34. Type F ²³³U CTW intake rates (dpm/d).^a

		U-232	U-233		U-232	U-233
Start	End	50th percentile	50th percentile	GSD	95th percentile	95th percentile
01/01/1961	12/31/1962	0.0135	0.783	4.06	0.14	7.84
01/01/1963	12/31/1967	0.0361	2.09	6.18	0.722	41.74
01/01/1968	12/31/1969	0.011	0.642	4.08	0.11	6.47

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Document No. ORAUT-TKBS-0003-7	Revision No. 00	Effective Date: 03/05/2024	Page 101 of 297

Table 7-35. Type M ²³³U CTW intake rates (dpm/d).^a

		U-232	U-233		U-232	U-233
Start	End	50th percentile	50th percentile	GSD	95th percentile	95th percentile
01/01/1961	12/31/1962	0.040	2.31	4.98	0.560	32.40
01/01/1963	12/31/1967	0.152	8.771	6.19	3.044	175.99
01/01/1968	12/31/1969	0.045	2.58	3.98	0.43	25.0

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-36. Type S ²³³U CTW intake rates (dpm/d).^a

		U-232	U-233		U-232	U-233
Start	End	50th percentile	50th percentile	GSD	95th percentile	95th percentile
01/01/1961	12/31/1962	0.912	52.7	4.46	10.66	616
01/01/1963	12/31/1967	3.00	173.2	6.00	57.1	3,300
01/01/1968	12/31/1969	0.607	35.1	3.97	5.86	339

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.4.5 <u>Fission Products</u>

Table 7-37 lists the FP (90 Sr) intakes and associated GSDs to be used for each year, through 1965, of potential FP exposure for nonCTWs and CTWs. The listed intakes are gross beta intakes and should be adjusted for strontium urinary activity fraction. Before 1966, FP intakes are based on 90 Sr intakes rather than 137 Cs because the 90 Sr values are more limiting. Starting in 1966, there is no 90 Sr (gross beta) data available and therefore the 137 Cs data are used. Tables 7-38 and 7-39 list the 137 Cs intakes and associated GSDs to be used for each year of potential 137 Cs exposure for nonCTWs and CTWs, respectively. Additional fission and activation product radionuclides should be assigned based on the 90 Sr or 137 Cs intakes as described in ORAUT-RPRT-0047 [ORAUT 2013b]. The 137 Cs intake rates ending on 12/31/1990 in these tables may be extended to later years including for best estimates.

Table 7-37. Type F FP (90Sr) intake rates (dpm/d).a

Start	End	nonCTW 50th percentile	nonCTW GSD	nonCTW 95th percentile	CTW 50th percentile	CTW GSD	CTW 95th percentile
01/01/1955	12/31/1958	70.05	3.00	427	69.46	3.00	423
01/01/1959	12/31/1961	32.43	3.03	201	34.33	3.01	211
01/01/1962	12/31/1965	97.41	3.00	594	102.2	3.00	623

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-38. Type F ¹³⁷Cs nonCTW intake rates (pCi/d).

		nonCTW 50th	nonCTW	nonCTW 95th
Start	End	percentile	GSD	percentile
01/01/1966	12/31/1966	111.3	3.00	678.2
01/01/1967	12/31/1967	42.98	3.00	261.9
01/01/1968	12/31/1968	87.45	3.00	532.9
01/01/1969	12/31/1971	18.86	3.53	149.9
01/01/1972	12/31/1977	31.86	3.00	194.1
01/01/1978	12/31/1985	9.396	3.07	59.55
01/01/1986	12/31/1986	34.84	3.00	212.3
01/01/1987	12/31/1990	2.819	4.63	35.02

Table 7-39. Type F ¹³⁷Cs CTW intake rates (pCi/d).^a

		CTW 50th	CTW	CTW 95th
Start	End	percentile	GSD	percentile
01/01/1966	12/31/1966	201.2	3.00	1,226
01/01/1967	12/31/1968	76.32	3.00	465
01/01/1969	12/31/1977	29.21	3.00	178
01/01/1978	12/31/1981	9.72	3.21	66.04
01/01/1982	12/31/1985	6.556	3.19	44.15
01/01/1986	12/31/1986	22.95	3.00	139.9
01/01/1987	12/31/1990	2.697	3.14	17.74

These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.4.6 <u>Cobalt-60</u>

Tables 7-40 and 7-41 list the ⁶⁰Co intakes and associated GSDs to be used for each year of potential ⁶⁰Co exposure for nonCTWs and CTWs and for solubility types M and S, respectively. Cobalt-60 intakes should only be assigned for workers believed to have handled purified ⁶⁰Co.

Table 7-40. Type M 60Co intake rates (pCi/d).a

Start	End	nonCTW 50th percentile	nonCTW GSD	nonCTW 95th percentile	CTW 50th percentile	CTW GSD	CTW 95th percentile
		•		L	•		
01/01/1955	12/31/1958	91.56	3.00	558	90.85	3.00	554
01/01/1959	12/31/1961	39.72	3.08	252	42.34	3.05	266
01/01/1962	12/31/1965	128.6	3.00	784	135	3.00	823
01/01/1966	12/31/1966	930	3.21	6,347	825.7	3.41	6,213
01/01/1967	12/31/1967	1,185	3.18	7,963	1,282	3.21	8,713
01/01/1968	12/31/1970	804.8	3.28	5,666	785.4	3.27	5,510

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-41. Type S 60Co intake rates (pCi/d).a

		nonCTW	0714	nonCTW	CTW	O-TIM	CTW
Start	End	50th percentile	nonCTW GSD	95th percentile	50th percentile	CTW GSD	95th percentile
01/01/1955	12/31/1958	365	3.00	2,224	362.3	3.00	2,208
01/01/1959	12/31/1961	146.6	3.12	953	157.3	3.10	1,014
01/01/1962	12/31/1965	503.2	3.00	3,066	529.7	3.00	3,228
01/01/1966	12/31/1966	3,654	3.21	24,889	3,248	3.41	24,414
01/01/1967	12/31/1967	4,760	3.20	32,316	5,106	3.23	35,090
01/01/1968	12/31/1970	3,137	3.28	22,175	3,068	3.27	21,569

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.4.7 <u>Neptunium</u>

Table 7-42 lists the neptunium intakes and associated GSDs to be used for each year of potential neptunium exposure for nonCTWs and CTWs. The intake rates ending on 12/31/1989 in these tables may be extended to later years including for best estimates.

Document No. ORAUT-TKBS-0003-7	Revision No. 00	Effective Date: 03/05/2024	Page 103 of 297

Table 7-42. Neptunium intake rates (dpm/d).a

		nonCTW		nonCTW	CTW		CTW
		50th	nonCTW	95th	50th	CTW	95th
Start	End	percentile	GSD	percentile	percentile	GSD	percentile
01/01/1961	12/31/1963	0.1541	5.62	2.638	0.1545	6.71	3.535
01/01/1964	12/31/1967	2.844	3.22	19.43	2.844	3.22	19.43
01/01/1968	12/31/1969	2.16	3.00	13.16	2.16	3.00	13.16
01/01/1970	12/31/1972	297.7	3.00	1,814	328.2	3.00	2,000
01/01/1973	12/31/1974	163.6	3.00	996.9	186.8	3.00	1,138
01/01/1975	12/31/1979	32.76	3.98	318.3	26.36	4.47	309
01/01/1980	12/31/1989	3.183	4.88	43.21	3.119	6.24	63.44

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.4.8 Thorium

Tables 7-43 and 7-44 list the ²³²Th intakes and associated GSDs to be used for each year of potential ²³²Th exposure for nonCTWs and CTWs for solubility types M and S, respectively. No ²³²Th intakes should be assigned for periods before November 1, 1972, because this period is covered under an SEC. The intake rates ending on 12/31/1989 in these tables may be extended to later years including for best estimates.

Table 7-43. Type M ²³²Th intake rates (dpm/d).

nonCTW

Start	End	Pathway	50th percentile	GSD	95th percentile
11/01/1972	05/31/1980	Inhalation	4.91	3.00	29.9
06/01/1980	12/31/1989	Inhalation	4.87	Constant	Not applicable
06/01/1980	12/31/1989	Ingestion	0.1	Constant	Not applicable

CTW^a

Start	End	Pathway	50th percentile	GSD	95th percentile
11/01/1972	05/31/1980	Inhalation	4.91	3.00	29.9
06/01/1980	12/31/1989	Inhalation	4.87	Constant	Not applicable
06/01/1980	12/31/1989	Ingestion	0.1	Constant	Not applicable

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

Table 7-44. Type S ²³²Th intake rates (dpm/d).

nonCTW

Start	End	Pathway	50th percentile	GSD	95th percentile
11/01/1972	05/31/1980	Inhalation	92.5	3.00	564
06/01/1980	12/31/1989	Inhalation	4.87	Constant	Not applicable
06/01/1980	12/31/1989	Ingestion	0.1	Constant	Not applicable

CTW^a

Start	End	Pathway	50th percentile	GSD	95th percentile
11/01/1972	05/31/1980	Inhalation	92.1	3.00	561
06/01/1980	12/31/1989	Inhalation	4.87	Constant	Not applicable
06/01/1980	12/31/1989	Ingestion	0.1	Constant	Not applicable

a. These values do not apply to subcontractor CTWs between October 1, 1972, and December 31, 1990.

7.5 CONCLUSIONS

The NIOSH guidance for evaluation and use of co-exposure datasets requires that data adequacy, completeness, and applicability be determined [NIOSH 2020a]. This requires confirmation that the

bioassay techniques SRS used were valid, collected data were reliable, and the data can be interpreted. The bioassay analytical techniques discussed above and review of the results provide evidence that the techniques were valid, reliable, and can be interpreted.

The guidance requires that all or a representative sample of the potentially exposed worker population submit samples. The bioassay sample schedules indicate that SRS had a process in place to identify and collect samples from potentially exposed workers with a graded approach commensurate with the exposure potential and that unmonitored workers could be adequately represented by monitored workers.

The stratified statistical analyses established two populations of workers (CTWs and nonCTWs), evaluated the bioassay data from each, and determined intake rates or doses applicable to each for the evaluated range of years. The intake rates or doses in Section 7.4 may be assigned to unmonitored workers to evaluate potential unmonitored internal dose, except these intake rates may not be applied to subcontractor CTWs for October 1, 1972, through December 31, 1990.

7.6 ATTRIBUTIONS AND ANNOTATIONS

Where appropriate in this document, bracketed callouts have been inserted to indicate information, conclusions, and recommendations provided to assist in the process of worker dose reconstruction. These callouts are listed here in the Attributions and Annotations section, with information to identify the source and justification for each associated item. Conventional References, which are provided in the next section of this document, link data, quotations, and other information to documents available for review on the Project's Site Research Database (SRDB).

Tom LaBone served as the initial Subject Expert for this document. Dr. LaBone was previously employed at SRS and his work involved management, direction or implementation of radiation protection and/or HP program policies, procedures or practices related to atomic weapons activities at the site. Preparation of this document has been overseen by a Document Owner who is fully responsible for the content, including all findings and conclusions. In all cases where such information or prior studies or writings are included or relied upon by Dr. LaBone, those materials are fully attributed to the source. Dr. LaBone's Disclosure Statement is available at www.oraucoc.org.

- [1] Arno, Matthew G. ORAU Team. Principal Health Physicist. January 2009. This is based on communications with Tom LaBone indicating "<" values were recorded as negative results in the HPRED.</p>
- [2] Mahathy, James M. ORAU Team. Health Physicist. October 2013. Uranium-233 was produced containing varying amounts of ²³²U, most of which were in the 5 to 7 ppm range [DuPont 1959–1971, pp. 458–460, 355, 1965a, 1965b, 1984a, 1984b]. Use of 8 ppm is a conservative estimate of ²³²U content.

REFERENCES

Anderson HA III [2021]. Advisory Board recommendation on Special Exposure Cohort SEC-00103 for the Savannah River Site October 1, 1972, through December 31, 1990. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. July 12. [SRDB Ref ID: 189253]

Becerra X [2021]. U.S. Department of Health and Human Services designation of additional members of the Special Exposure Cohort under the Energy Employees Occupational Illness Compensation Program Act of 2000 designating a class of employees from Savannah River Site, Aiken, South Carolina. Washington, DC: U.S. Department of Health and Human Services, Office of the Secretary. August 18. [SRDB Ref ID: 188681]

Bingham E [1997]. Surveillance of former construction workers at Oak Ridge Reservation: a revised needs assessment. Cincinnati, OH: University of Cincinnati. December. [SRDB Ref ID: 12489]

Boni AL [1959]. Rapid determination of mixed beta-gamma radionuclides in urine. Health Phys 2(2):186–188. [SRDB Ref ID: 200304]

Boswell JM [2000]. Savannah River Site fiftieth anniversary, 50 years of excellence in science and engineering at the Savannah River Site. Savannah River Site, Aiken, SC: Westinghouse Savannah River Company. WSRC-MS-2000-00061. [SRDB Ref ID: 45046]

Butler FE [1964]. Separation of actinides by liquid ion exchange. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSPU 64-30-18, September. [SRDB Ref ID: 49523]

Butler FE [1968]. Rapid bioassay methods for plutonium, neptunium, and uranium. Health Phys 15(1):19–24. [SRDB Ref ID: 11379]

Butler FE, Hall RM [1970]. Determination of actinides in biological samples with bidentate organophosphorus extractant. Anal Chem *42*(9):1073–1076. [SRDB Ref ID: 119808]

Butler HL, Splichal WF Jr. [1965]. Solid-state alpha counters: a replacement for nuclear track counting in bioassay procedures. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSPU 65-30-6, May. [SRDB Ref ID: 49245]

DuPont [1954]. 1954 craft payroll codes. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 102063]

DuPont [1956–1961]. Enriched uranium, lead, mercury induced activity. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 53261]

DuPont [1959–1971]. Radiation and contamination control. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSOP-40-Hist-Vol-2. [SRDB Ref ID: 52805]

DuPont [1961]. Progress report October 1961 Works Technical Department. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSP 61-1-10-DV, November 20. [SRDB Ref ID: 11796]

DuPont [1961–1969]. Special product log records 2-16-1961 to 10-13-1969. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 51953]

DuPont [1963–1970]. Am-Cm record book May 29, 1963 - May 26, 1970. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 52008]

DuPont [1965a]. Progress report February 1965 Works Technical Department. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSP-65-1-2, March 17. [SRDB Ref ID: 68104]

DuPont [1965b]. Progress report May 1965 Works Technical Department. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSP 65-1-5, May. [SRDB Ref ID: 68105]

DuPont [1965–1968]. Bioassay control reports 1965-1968. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 116715]

DuPont [1968a]. Bioassay control procedure. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSOL 193-302 Rev. 2, January 2. [SRDB Ref ID: 126996]

DuPont [1968b]. Monthly reports exposure evaluation and dosimetry January - December 1968. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 50318]

DuPont [1968–1972]. EU record 1-8-1968 thru 11-3-1972. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 49822]

DuPont [1969]. Plutonium - neptunium record book. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. April 8. [SRDB Ref ID: 51973]

DuPont [1969–1973]. Pu-AmCm record book 5-14-1969 thru 10-19-1973. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 53271]

DuPont [1969–1981]. Health protection monthly summary June 1969-December 1981. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 108754]

DuPont [1970]. Bioassay control procedure. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSOL 193-302 Rev. 3, January. [SRDB Ref ID: 126997]

DuPont [1970–1973]. Am-Cm record book May 27, 1970 - February 9, 1973. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 52006]

DuPont [1971a]. Bioassay control procedure. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSOL 193-302 Rev. 4, March. [SRDB Ref ID: 126998]

DuPont [1971b]. Bioassay control procedure. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSOL 193-302 Rev. 5, September 1. [SRDB Ref ID: 124941]

DuPont [1972]. Works technical department progress report for January 1972. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSP 72-1-1, January. [SRDB Ref ID: 68265]

DuPont [1973–1978]. Am-Cm record book February 10, 1973 - April 30, 1978. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 52010]

DuPont [1973–1979]. Plutonium - americium record book October 22, 1973 - February 1, 1979. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 51970]

DuPont [1973–1986]. Savannah River Plant history plantwide activities January 1973 through December 1986. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSP 74-454-5, November. [SRDB Ref ID: 89230]

DuPont [1974]. Works technical department progress report for November 1974. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSP 74-1-11. [SRDB Ref ID: 68041]

DuPont [1974–1984]. Dosimetry special hazards incident investigations 300-399. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 45096]

DuPont [1976]. Bioassay control procedure. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSOL 193-302 Rev. 7, October 15. [SRDB Ref ID: 131322]

DuPont [1978–1983]. Am-Cm record book May 1, 1978 - November 29, 1983. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 52019]

DuPont [1979–1980]. Pu-Am record book February 2, 1979 - July 7, 1980. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 52018]

DuPont [1980–1981a]. Am-Cm 5 record book August 12, 1980 - June 9, 1981. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 52012]

DuPont [1980–1981b]. Pu-Am 3 record book August 3, 1980 - August 22, 1981. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 52015]

DuPont [1981]. Job plans and permits November - December 1981. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 157063]

DuPont [1981–1986]. Pu-Am record book October 23, 1981 to June 9, 1986. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 53283]

DuPont [1982]. Job plans and permits January - April 1982. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 157062]

DuPont [1983a]. Job plans and permits January - May 1983. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 157069]

DuPont [1983b]. Job plans and permits September - December 1983. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 157067]

DuPont [1983c]. Job plans and permits June - August 1983. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 157066]

DuPont [1984a]. History of the Savannah River Laboratory Volume I production reactor, fuel, and target technology. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPST-62-200-I, August. [SRDB Ref ID: 89232]

DuPont [1984b]. History of the Savannah River Laboratory Volume II separations technology. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPST-62-200-II, June. [SRDB Ref ID: 89523]

DuPont [1984c]. Job plans and permits January - April 1984. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 157068]

DuPont [1985a]. Job plans and permits May - December 1985. Savannah River Site, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 157074]

DuPont [1985b]. Health protection department radiation survey procedures. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSOP 193, February 25. [SRDB Ref ID: 45958]

DuPont [1986]. Job plans January - June 1986. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 159277]

DuPont [1986–1989]. Pu and Am Record Book June 25, 1986 - August 9, 1989. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 52022]

DuPont [1987]. Bioassay requests and results 1987. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 113839]

DuPont [1988]. Savannah River Plant history plantwide activities January through December 1987. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSP-88-454-5, October. [SRDB Ref ID: 89225]

DuPont [no date a]. Savannah River Plant radiation and contamination control. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSOP-40. [SRDB Ref ID: 86188]

DuPont [no date b]. Bioassay control procedure. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSOL 193-302 Rev. 8. [SRDB Ref ID: 129515]

Fleming RR [1973–1979]. Savannah River Site Atomic Energy Division Explosives Department R. R. Fleming lab notebook. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. DPSTN-2011. [SRDB Ref ID: 61649]

Kocher DC [1981]. Radioactive decay data tables a handbook of decay data for application to radiation dosimetry and radiological assessments. Springfield, VA: U.S. Department of Energy, Office of Scientific and Technical Information. DOE/TIC-11026, April. [SRDB Ref ID: 32563]

McCarty LE, ed. [2000]. Historical generation and flow of recycled uranium at the Savannah River Site. Aiken, SC: Westinghouse Savannah River Company. ESH-PEQ-2000-00059. [SRDB Ref ID: 16499]

NIOSH [2008]. Worker outreach meeting 05-22-08 1:00 PM - proceedings. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. May 22. [SRDB Ref ID: 90125]

NIOSH [2010]. Radiation exposures covered for dose reconstructions under Part B of the Energy Employees Occupational Illness Compensation Program Act. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. DCAS-IG-003 Rev. 1, October 5. [SRDB Ref ID: 88929]

NIOSH [2011]. Special Exposure Cohort petition evaluation report petition SEC-00103 Addendum 2 Savannah River Site qualified March 4, 2008. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Petition SEC-00103 Addendum 2, August 9. [SRDB Ref ID: 118443]

NIOSH [2012]. Special Exposure Cohort petition evaluation report SEC-00103 addendum 3 Savannah River Site qualified March 4, 2008. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Petition SEC-00103 Addendum 3, November 20. [SRDB Ref ID: 158744]

NIOSH [2019], NIOSH/ORAU: NIOSH response to SC&A review of ORAUT-OTIB-0081, Internal coworker dosimetry data for the Savannah River Site. Cincinnati, OH: Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. November 25. [SRDB Ref ID: 178696]

NIOSH [2020a]. Criteria for the evaluation and use of co-exposure datasets. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. DCAS-IG-006 Rev. 00, March 6. [SRDB Ref ID: 179686]

NIOSH [2020b]. NIOSH/ORAU: Response to SC&A memorandum, "Summary position on trivalent bioassay variability." Cincinnati, OH: Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, October 21, [SRDB Ref ID: 1837661

NNSA [2021]. News media report - United States, Canada complete nuclear material shipping campaign. Washington, DC: U.S. Department of Energy, National Nuclear Security Agency, January 12. [SRDB Ref ID: 199440]

ORAUT [2004a]. Coworker data exposure profile development. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-PLAN-0014 Rev. 00, November 24. [SRDB Ref ID: 166559]

ORAUT [2004b]. Technical Information Bulletin: Tritium calculated and missed dose estimates. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-OTIB-0011 Rev. 00, June 29. [SRDB Ref ID: 194301

ORAUT [2005]. Analysis of coworker bioassay data for internal dose assignment. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-OTIB-0019 Rev. 01, October 7. [SRDB Ref ID: 19438]

ORAUT [2012a]. A comparison of mixed fission and activation product coworker models at the Savannah River Site. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-RPRT-0058 Rev. 00, September 10. [SRDB Ref ID: 118388]

ORAUT [2012b]. A comparison of neptunium coworker models at the Savannah River Site. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-RPRT-0056 Rev. 00, August 20. [SRDB Ref ID: 117545]

ORAUT [2013a]. Documented communication with Tom LaBone and Mitch Findley on internal dosimetry and location information. Oak Ridge, TN: Oak Ridge Associated Universities Team. April 29. [SRDB Ref ID: 126806]

ORAUT [2013b]. Assignment of fission and activation product radionuclides for non-specific bioassays at Savannah River Site – comparison of methods. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-RPRT-0047 Rev. 00, July 23. [SRDB Ref ID: 126811]

ORAUT [2014a]. Analysis of stratified coworker datasets. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-RPRT-0053 Rev. 02, October 8. [SRDB Ref ID: 136245]

ORAUT [2014b]. Parameters to consider when processing claims for construction trade workers. Oak Ridge, TN: Oak Ridge Associated Universities Team, ORAUT-OTIB-0052 Rev. 02, July 24, ISRDB Ref ID: 133862]

ORAUT [2014c], SRS HPA and department code designations from 1959 to 2004 and forward spreadsheet 2. Savannah River Site, Aiken, SC: Savannah River Nuclear Solutions. [SRDB Ref ID: 154268]

ORAUT [2015]. Fission and activation product assignment for internal dose-related gross beta and gross gamma analyses. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-OTIB-0054 Rev. 04, August 27. [SRDB Ref ID: 146884]

ORAUT [2016a]. Use of claimant datasets for coworker modeling. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-OTIB-0075 Rev. 01, June 17. [SRDB Ref ID: 157060]

ORAUT [2016b]. Technical basis for sampling plan. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-RPRT-0078 Rev. 00, June 17. [SRDB Ref ID: 156949]

ORAUT [2017a]. Internal dosimetry coworker data completeness test. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-RPRT-0086 Rev. 00, September 18. [SRDB Ref ID: 167778]

ORAUT [2017b]. Evaluation of monitoring of construction workers identified in high-level cave job plans at the Savannah River Site. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-RPRT-0083 Rev. 00, June 27. [SRDB Ref ID: 167136]

ORAUT [2017c]. Evaluation of method for assessment of thorium-232 exposures at the Savannah River Site from 1972 from 1989. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-RPRT-0070 Rev. 00, May 15. [SRDB Ref ID: 166846]

ORAUT [2018]. Internal dose reconstruction. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-OTIB-0060 Rev. 02, April 20. [SRDB Ref ID: 171554]

ORAUT [2019]. Internal coworker dosimetry data for the Savannah River Site. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-OTIB-0081 Rev. 04. March 13. [SRDB Ref ID: 175614]

ORAUT [2020]. Estimating doses for plutonium strongly retained in the lung. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-OTIB-0049 Rev. 02, September 1. [SRDB Ref ID: 178329]

ORAUT [2021]. Multiple imputation applied to bioassay co-exposure models. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-RPRT-0096 Rev. 01, June 11. [SRDB Red ID: 187045]

ORAUT [2022]. Support files for ORAUT-TKBS-0003-7, Rev. 00 zip file. Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 192782]

ORAUT [2024a]. Savannah River Site – site description. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-TKBS-0003-2 Rev. 04, March 5. [SRDB Ref ID: 192921]

ORAUT [2024b]. Savannah River Site – occupational internal dose. Oak Ridge, TN: Oak Ridge Associated Universities Team. ORAUT-TKBS-0003-5 Rev. 04, March 5. [SRDB Ref ID: 192893]

Reed MB, Swanson MT, Tyson J, Gillett TD [2013]. Bringing it to form a thematic study of Savannah River Site's separations processes, F and H Areas. Stone Mountain, GA: New South Associates. Technical Report 2202, July 29. [SRDB Ref ID: 165231]

Sebelius K [2012]. HHS designation of additional members of the Special Exposure Cohort under the Energy Employees Occupational Illness Compensation Program Act of 2000 designating a class of employees Savannah River Site Aiken, South Carolina. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. February 2. [SRDB Ref ID: 167800]

SC&A [2014]. SC&A discussion items and clarifications for February 26, 2014 Savannah River Site work group meeting. Memorandum to Savannah River Site Work Group. Vienna, VA: S. Cohen & Associates. February 24. [SRDB Ref ID: 158936]

SC&A [2019]. SC&A draft: Review of ORAUT-OTIB-0081, revision 04, "Internal Coworker Dosimetry Data for the Savannah River Site." Arlington, VA: SC&A, Inc. SCA-TR-2019-SEC004 Rev. 0 draft, September 4. [SRDB Ref ID: 178392]

SC&A [2020]. SC&A memo: Summary position on trivalent bioassay variability. Memorandum to Savannah River Site Work Group and SEC Issues Work Group. Vienna, VA: S. Cohen & Associates. June 3. [SRDB Ref ID: 181759]

Strack BS, ed. [2002]. Savannah River Site at fifty. Washington, DC: U.S. Government Printing Office. [SRDB Ref ID: 24750]

Taylor GA, Crase KW, LaBone TR, Wilkie WH [1995]. A history of personnel radiation dosimetry at the Savannah River Site. Aiken, SC: Westinghouse Savannah River Company. WSRC-RP-95-234, May. [SRDB Ref ID: 10931]

Taylor GA [2000]. The evolution of internal dosimetry bioassay methods at the Savannah River Site. Aiken, SC: Westinghouse Savannah River Company. WSRC-MS-2000-00290. [SRDB Ref ID: 46146]

Watts JR [1962–1967]. Savannah River Laboratory Atomic Energy Division Explosives Department, Jim Watts lab notebook August 30, 1962 - October 26, 1967. Savannah River Plant, Aiken, SC: E. I. du Pont de Nemours and Company. [SRDB Ref ID: 61711]

WSRC [1990]. Internal dosimetry technical basis manual. Savannah River Site, Aiken, SC: Westinghouse Savannah River Company. WSRC-IM-90-139, December 20. [SRDB Ref ID: 11266]

WSRC [1996]. The SRS internal dosimetry technical basis manual. Savannah River Site, Aiken, SC: Westinghouse Savannah River Company. WSRC-IM-90139 Rev. 5, October 1. [SRDB Ref ID: 178303]

WSRC [2001]. The Savannah River Site internal dosimetry technical basis manual. Savannah River Site, Aiken, SC: Westinghouse Savannah River Company. WSRC-IM-90139 Rev. 8, December 31. [SRDB Ref ID: 722]

GLOSSARY

absorption type

Categories for materials according to their rates of absorption from the respiratory tract to the blood, which replaced the earlier inhalation clearance classes. Defined by the International Commission on Radiological Protection, the absorption types are F: deposited materials that are readily absorbed into blood from the respiratory tract (fast solubilization), M: deposited materials that have intermediate rates of absorption into blood from the respiratory tract (moderate rate of solubilization), and S: deposited materials that are relatively insoluble in the respiratory tract (slow solubilization).

activity

Amount of radioactivity. The International System unit of activity is the becquerel (1 disintegration per second); the traditional unit is the curie [37 billion (3.7 × 10¹⁰) becquerels].

activity fraction

Proportion of the total activity due to a particular radionuclide.

activity median aerodynamic diameter (AMAD)

Diameter of a unit density sphere with the same terminal settling velocity in air as that of the aerosol particle whose activity is the median for the entire aerosol.

alpha radiation

Positively charged particle emitted from the nuclei of some radioactive elements. An alpha particle consists of two neutrons and two protons (a helium nucleus) and has an electrostatic charge of +2.

bioassay

Measurement of amount or concentration of radionuclide material in the body (in vivo measurement) or in biological material excreted or removed from the body (in vitro measurement) and analyzed for purposes of estimating the quantity of radioactive material in the body. Also called radiobioassay.

body burden

Amount of radioactive material in an individual's body at a particular point in time.

co-exposure dose

Previously referred to as "coworker" on the Project, co-exposure dose is a representative dose typically assigned because (1) an Energy Employee was not monitored (unmonitored) but should have been or (2) the worker was monitored but the results are unavailable or unreliable.

confidence interval

Interval about an estimate of a stated quantity within which the value of the quantity is expected to be within a specified probability (confidence level) of $1 - \alpha$. Note that $1 - \alpha$ is the probability that the random interval contains the fixed quantity, not the probability that the quantity is in the interval. See *accuracy* and *uncertainty*.

decay products

See progeny.

depleted uranium (DU)

Uranium with a percentage of ²³⁵U lower than the 0.7% found in natural uranium. As examples, spent (used) fuel elements, byproduct tails, residues from uranium isotope separation, and some weapons materials contain DU. DU can be blended with highly enriched uranium to make reactor fuel or used as a raw material to produce plutonium. DU was used for ²³⁹Pu production at SRS, and the listed isotopic activity fractions were:

<u>Isotope</u>	Activity fraction
²³⁴ U	0.0840
²³⁵ U	0.0145
²³⁸ U	0.9015

dose

In general, the specific amount of energy from ionizing radiation that is absorbed per unit of mass. Effective and equivalent doses are in units of rem or sievert; other types of dose are in units of rad, rep, or grays.

dosimeter

Device that measures the quantity of received radiation, usually a holder with radiationabsorbing filters and radiation-sensitive inserts packaged to provide a record of absorbed dose received by an individual.

error

Difference between the correct, true, or conventionally accepted value and the measured or estimated value. Error is a qualitative term unless the true value is known. Sometimes used to mean estimated uncertainty. See accuracy and uncertainty.

enriched uranium analysis

Urinalysis method using alpha activity counting. The analyte is not necessarily enriched uranium.

exposure

(1) In general, the act of being exposed to ionizing radiation; see acute exposure and chronic exposure. (2) Measure of the ionization produced by X- and gamma-ray photons in air in units of roentgens.

external dose

Dose received from radiation (e.g., photons, electrons, and neutrons) that originates outside the body including that from medical screening examinations.

fission product (FP)

(1) Radionuclides produced by fission or by the subsequent radioactive decay of radionuclides. (2) Fragments other than neutrons that result from the splitting of an atomic nucleus.

gamma radiation

Electromagnetic radiation (photons) that originates in atomic nuclei and accompanies many nuclear reactions (e.g., fission, radioactive decay, and neutron capture). Gamma photons are identical to X-ray photons; the difference is that X-rays do not originate in the nucleus.

half-life (T, T1/2, T1/2)

Time in which half of a given quantity of a particular radionuclide disintegrates (decays) into another nuclear form. During one half-life, the number of atoms of a particular radionuclide

decreases by one half. Each radionuclide has a unique half-life ranging from millionths of a second to billions of years. See *biological half-life* and *effective half-life*.

highly enriched uranium (HEU)

Uranium enriched to at least 20% ²³⁵U for use as fissile material in nuclear weapons components and some reactor fuels. Also called high-enriched uranium. SRS lists the isotopic activity fractions as:

<u>Isotope</u>	Activity fraction
²³⁴ U	0.9806
²³⁵ U	0.0194
²³⁸ U	0.0000

intake

Radioactive material taken into the body by inhalation, absorption through the skin, injection, ingestion, or through wounds.

internal dose

Dose received from radioactive material in the body (e.g., plutonium or uranium) that was inhaled, ingested, absorbed, or injected through a wound.

isotope

One of two or more atoms of a particular element that have the same number of protons (atomic number) but different numbers of neutrons in their nuclei (e.g., ²³⁴U, ²³⁵U, and ²³⁸U). Isotopes have very nearly the same chemical properties.

monitoring

Periodic or continuous determination of the presence or amount of ionizing radiation or radioactive contamination in air, surface water, groundwater, soil, sediment, equipment surfaces, or personnel (for example, bioassay or alpha scans). In relation to personnel, monitoring includes internal and external dosimetry including interpretation of the measurements.

natural uranium (NU)

Uranium as found in nature, approximately 99.27% 238 U, 0.72% 235 U, and 0.0054% 234 U by mass. The specific activity of this mixture is 2.6 × 10^7 becquerel per kilogram (0.7 microcuries per gram).

nuclide

Stable or unstable isotope of any element. Nuclide relates to the atomic mass, which is the sum of the number of protons and neutrons in the nucleus of an atom. A radionuclide is an unstable nuclide.

progeny

Nuclides that result from decay of other nuclides. Also called decay products and formerly called daughter products.

radiation source

(1) Any object or substance that emits radiation. (2) Package of radioactive material constructed to have specific radiation properties used, for example, for medical purposes or to calibrate dosimeters.

Document No. ORAUT-TKBS-0003-7 Revis	on No. 00 Effective D	Date: 03/05/2024 Page 11	5 of 297
--------------------------------------	-----------------------	--------------------------	----------

radionuclide

Radioactive nuclide. See nuclide.

recycled uranium (RU)

Uranium first irradiated in a reactor, then recovered through chemical separation and purification. RU contains minor amounts of transuranic material (e.g., plutonium and neptunium) and fission products (e.g., technetium) or uranium products (e.g., ²³⁶U) after purification. SRS lists the isotopic activity fractions as:

Isotope	Activity fraction
234	0.8489
²³⁵ U	0.0120
²³⁶ U	0.1388
²³⁸ U	0.0003

ATTACHMENT A QUALITY ASSURANCE SUMMARY¹

LIST OF FIGURES

<u>FIGU</u>	<u>RE</u> <u>TITLE</u>	<u>PAGE</u>
A-1	Wald plot for 30 individuals	118
A-2	Plot to determine the minimum number of claims to be sampled	121
A-3	Operational Characteristic (OC) curve for 410 individuals	122
A-4	Sequential plot of missing records plot for 410 individuals	123
A-5	Sequential plot of missing records plot for 382 individuals	125
A-6	Plot to determine the minimum number of claims to be sampled	127
A-7	Plot to determine the minimum number of records to be sampled	127
A-8	OC curve for 108 individuals	128
A-9	Sequential plot of missing records for 105 individuals	128

This attachment uses the following acronyms: AQL = acceptance quality level; CATI = computer-assisted telephone interview; LTPD = lot tolerance percent defective; N = total number of data points in a dataset; n = number of datapoints checked in a dataset; α = producer's risk or ORAUT risk; β = consumer's risk or DCAS risk.

Savannah River Site Internal Co-Exposure In Vitro Completeness Check

May 4, 2017

Introduction

The purpose of this report is to document activities that have occurred relating to the Dataset Completeness check of in vitro bioassay for the Savannah River Site Internal Coworker Study (ORAUT-OTIB-0081).

The Dataset Completeness process contains two efforts. Part 1 is a claim level check that will test whether an individual who had at least one result in the period of interest is in fact included in the electronic dataset. Part 2, a result level check, will then be performed to ensure that all sample results for a given individual are included in the dataset. This report outlines the findings of the Part 1 and Part 2 completeness tests.

The NOCTS database was queried to obtain a list of SRS claims with at least 1 day of verified employment before 01/01/1991. This was used as the Master List of claims that will be used to develop a list of claims for both Part 1 and Part 2 completeness checks. A total of 3,988 unique NOCTS claims were part of the Master List. The Master List was compared to the list of claims in the transcribed in vitro database compiled for SRS. The transcribed dataset included 2,874 unique NOCTS claims. Therefore, 1,114 claims from the Master List were not in the transcribed dataset. These claims were the initial basis of the Part 1 (Claim Level) completeness test (i.e., no in vitro data exists). The Part 1 testing plan involves a 100% review of all NOCTS data for 1,114 claims to determine if in vitro data before 01/01/1991 exists.

Part 1 (Claim Level) Review

The initial Part 1 review of NOCTS data for the 1,114 claims was completed on 04/10/2017. The final review and comparison against the Master List verified that 1,114 claims from the Master List had no data to be entered into the combined dataset. These 1,114 unique claim IDs will be excluded from the Part 2 completeness review.

In addition, a list of Claim IDs was created with data entered in the combined file but do NOT appear in the Master List (again the Master List is based on verified SRS employment). There were a total of 36 claims to review in this listing. The following is a summary:

- 32 Claim IDs have verified employment outside the timeframe of interest. After reviewing the combined in vitro dataset:
 - 15 of 32 have only one entry with no data recorded. As part of the original data entry effort, claims with no data were added to the dataset as verification the claim information was reviewed
 - 16 of 32 claims in the dataset have only post-1990 data entered in the combined file. This post-1990 data will not be used in the intake modeling for OTIB-0081 Rev. 04.
 - [Redacted].
- 4 Claim IDs in the electronic dataset were transcribed incorrectly. The appropriate Claim IDs were corrected and all 4 claims had existing lines in the data set.

After accounting for all issues above, a total of 2,875 NOCTS claims will be used for the Part 2 completeness check.

Part 2 (Result Level) Review

Part 2 of the completeness review involves detailed page-by-page review of a group of Claim IDs to ensure all pertinent data were entered. Based on the outcome of a working demonstration of the process in March 2017, it was determined that a line tally counting technique would be used, with a focus on three critical fields. Sample date, nuclide, and result are the key fields for the completeness check. If any of these three fields were missing from the electronic dataset, the entire line of data is considered unusable.

This completeness test was done during the earliest stages of development of ORAUT-RPRT-0086 [ORAUT 2017a], so published methods are not used here. Limiting the Part 2 claim pool to those with in vitro data, a list of 30 claim IDs were chosen randomly from the original set of 2,875. The claim files for these 30 claims were checked, and a row was called missing if any of the three pieces of necessary information (i.e., sample date, nuclide, or result) were missing. There were 1,762 opportunities for missing lines of data and 14 were actually missing from the dataset. Figure A-1 below summarizes this information. This developmental test is a sequential sampling method, which continues until the values plotted in Figure A-1 extend below the lower diagonal line (passes the test) or above the upper diagonal line (fails the test). The plotted values crossed the lower diagonal line at the vertical red line, but this happened while checking the first claim. The test continued until a minimum of 30 claims were checked.

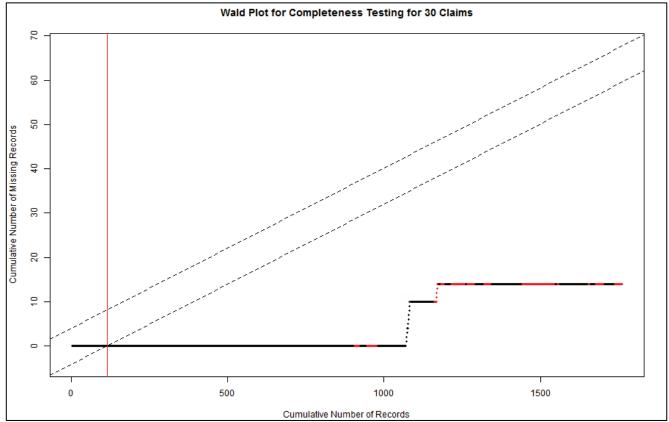


Figure A-1. Wald plot for 30 individuals. The color of the dots is alternated from red to black going from one person to the next.

Document No. ORAUT-TKBS-0003-7 Effective Date: 03/05/2024 Page 119 of 297 Revision No. 00

ATTACHMENT A QUALITY ASSURANCE SUMMARY (continued)

Results

14 missing / 1,762 opportunities = 0.79% We are 95% confident that the missing data rate is between 0.03% and 3.99%.

SRS In Vivo Completeness Report

August 7, 2017

The NOCTS database was queried to obtain a list of SRS claims with at least 1 day of verified employment before 01/01/1991. This was used as the Master List of claims that will be used to develop a list of claims for both Part 1 and Part 2 completeness checks. A total of 3,988 unique NOCTS claims were part of the Master List. The Master List was compared to the list of claims in the original transcribed in vivo database compiled for SRS. The transcribed dataset included 2,810 unique NOCTS claims, therefore 1,178 claims from the Master List were not in the transcribed dataset. These claims were the initial basis of the Part 1 (Claim Level) completeness test (i.e., no in vivo data exists). The Part 1 testing plan involves a 100% review of all 1,178 claims to determine if in vivo data before 01/01/1991 exists.

Part 1 (Claim Level) Review

The initial Part 1 review of 1,178 claims was complete on 05/17/2017. The final review of the 1,178 claims confirmed that no data were reported in the period of interest. These 1,178 claims were excluded from the Part 2 completeness check.

During the Part 1 completeness testing, a list of Claim IDs was created with data entered in the transcribed dataset but do NOT appear in the Master List (this list is based on verified SRS employment). There were a total of 13 claims to review in this listing. Each claim contained relevant in vivo data before 01/01/1991 and therefore this information was assessed as part of the Part 2 completeness testing. In summary, a total of 2,823 SRS claim files will be subject to the Part 2 completeness.

Part 2 (Result Level) Review

This completeness test was done during the development of ORAUT-RPRT-0086 [ORAUT 2017a], so published methods are not used here. Limiting the Part 2 claim pool to those claim IDs with in vivo data, a list of 101 claims were chosen randomly from the original set of 2,823. The NOCTS claim files for these 101 claims were checked, and a row was called an error if any of the pieces of necessary information (sample date, nuclide, result, or MDA data) were found to be missing. The initial Part 2 review was complete on July 5. A total of 840 lines of data were evaluated for completeness, with 31 errors noted. Of the 31 errors found, 30 were attributed to 2 of the 101 claim IDs. The point estimate for this review was 3.56% and the 95% confidence interval was 0.37% to 12.89%. Considering the upper limit was above the 5% success criteria, an additional test was warranted. The appropriate corrections were made to the 31 errors found and RPRT-0086 was finalized for Part 2 completeness.

Based on analysis of this original dataset and the techniques outlined in RPRT-0086, it was determined that the sample size would be increased to 410 claims for the secondary Part 2 completeness test. A new list of 410 claims was randomly chosen from the original set of 2,823 claims. The claim files for these 410 claims were checked, and a row was called missing if any of the pieces of necessary information were missing. There were 4,048 opportunities for missing records, with 26 errors noted. The point estimate for this review was 0.64% and the 95% confidence interval was between 0.25% and 1.35%. A summary of the effort is included below. Figures A-2 through A-4 summarize this information.

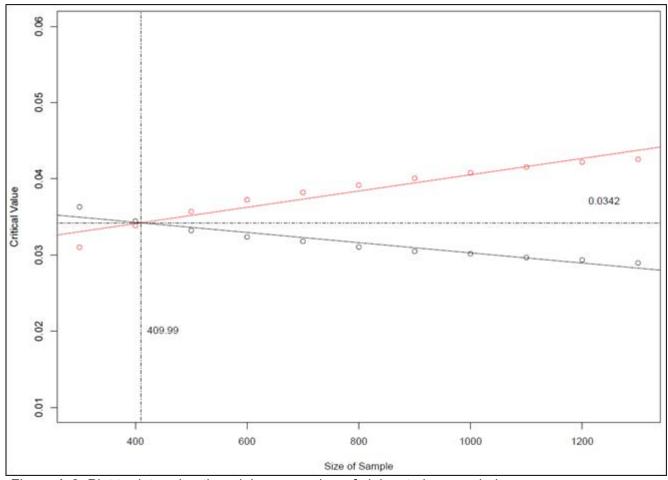


Figure A-2. Plot to determine the minimum number of claims to be sampled.

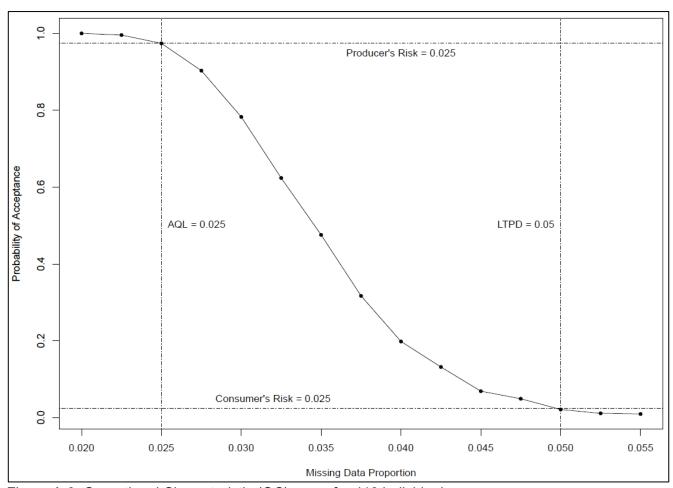


Figure A-3. Operational Characteristic (OC) curve for 410 individuals.

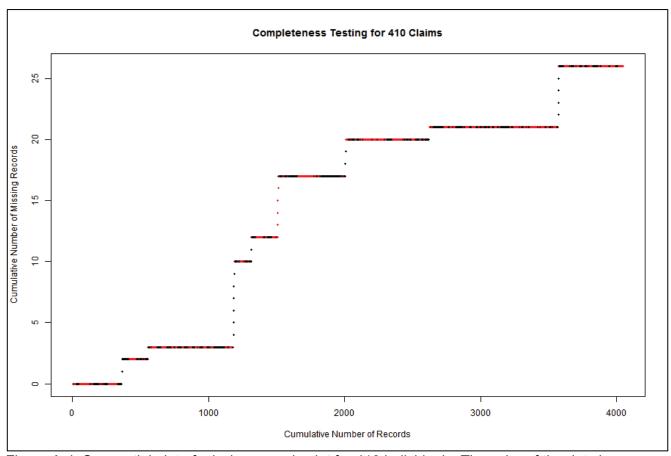


Figure A-4. Sequential plot of missing records plot for 410 individuals. The color of the dots is alternated from red to black going from one person to the next.

Results

26 missing / 4,048 opportunities = 0.64%

We are 95% confident that the missing record rate is between 0.25% and 1.35%.

Page 124 of 297

ATTACHMENT A QUALITY ASSURANCE SUMMARY (continued)

Savannah River Site Internal Co-Exposure In Vitro Completeness Check – Neptunium (Np)

March 7, 2018

Introduction

The purpose of this report is to document activities related to a Completeness Test of the Np in vitro logbook dataset for the Savannah River Site Internal Co-Exposure Study (ORAUT-OTIB-0081) Revision 04. The original dataset was transcribed before the development and approval of ORAUT-RPRT-0086, *Internal Dosimetry Coworker Data Completeness Test.* Considering that the intake modeling for Np will be performed under Revision 04 of the co-exposure study document, it was decided that a formal Completeness Test was necessary for the Np in vitro dataset.

The Database Completeness process contains two efforts. Part 1 is a claim level check that will test whether an individual who had at least one result in the period of interest is in fact included in the electronic dataset. Part 2, a result level check, will be performed to ensure that all sample results for a given individual are included in the dataset. This report outlines the findings of the Part 1 and Part 2 Completeness Tests for Np in vitro data.

Part 1 (Claim Level) Completeness Check Results

The Np in vitro database used for OTIB-0081 was compiled separately from other SRS nuclides. The Np dataset was transcribed from original logbooks obtained during data capture activities at SRS. The data were not a result of NOCTS Claim mining used for most of the other in vitro datasets. Therefore, the completeness testing protocol involved creating a logbook based employee list for comparison to NOCTS claim information. This logbook mapping process was largely completed outside of the completeness effort. Employee mapping involved recording variations on Last Name, First Name, Middle Initial, and PRID from logbooks and NOCTS documents. A Master List of SRS NOCTS Claim IDs with at least 1 day of employment before 1991 was developed and reviewed for the presence of at least one Np result. As a result of this review 382 claims were noted as containing Np results in both the transcribed logbook database and NOCTS claim data. These 382 claims are subject to Part 2 completeness testing.

Part 2 (Result Level) Completeness Check Results

Limiting the Part 2 claim pool to 382 claimants from the Claim Level test, the ORAUT developed a testing plan for this unique dataset. The Np in vitro data are comprised of two different entry efforts with slightly different reporting formats. At SRS, urinalysis was the primary method of checking for Np intakes during the 1960s. These results were generally recorded in separate, stand-alone Np logbooks. Around 1970, Np started to be "measured" by WBCs. Np urinalysis was no longer being routinely performed at the site. The main rationale for Np urinalysis involved a positive Pu urine result. The assumption was that if an Np intake occurred at a level detectable in urine, an associated positive Pu result would be recorded as well. From a reporting standpoint in this era, Np urinalysis results were not recorded in standalone logbooks. Np urinalysis results were included in logbooks for Pu, Am, EU, etc. During the initial evaluation of Np in OTIB-0081 Revision 02, only 1961–1969 Np urinalysis data were considered for intake modeling. The ORAUT plans to use a similar approach in Revision 04. Post-1969 Np modeling will use WBC results in the intake modeling approach.

Although the post-1969 Np urinalysis data will be used in this co-exposure study, the ORAUT decided to do a census, checking all 382 claims, of the Np in vitro datasets. This will allow the exact missing data rate of the complete set to be calculated and eliminate the need for confidence intervals. This will also allow for splitting the data by era and calculating an exact missing data rate. As with previous completeness testing efforts, only fields critical to the co-exposure TWOPOS analysis were considered critical items. This was limited to 'Date' and 'Result' fields for the Np dataset.

After evaluating each dataset, the final Part 2 completeness results for Np in vitro dataset are:

- 1,082 lines checked overall
 - 25 missing (2.31%)
- 991 lines checked before 1970
 - 14 missing (1.41%)
- 91 lines checked post 1969
 - 11 missing (12.08%)

The Part 2 completeness test is considered a success (less than 5% overall error). Figure A-5 shows the error checking for the 382 claims in question.

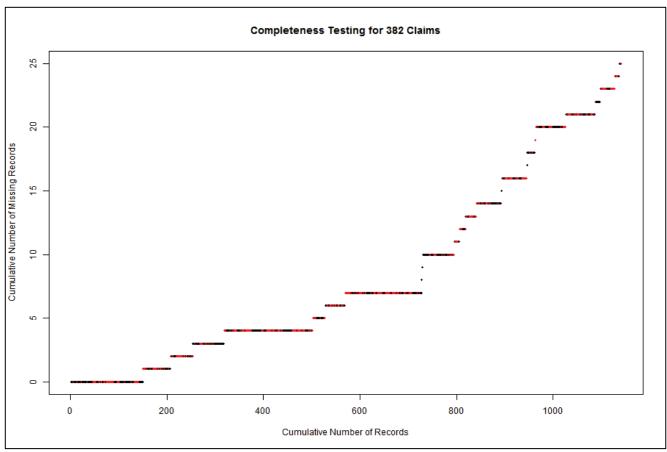


Figure A-5. Sequential plot of missing records plot for 382 individuals. The color of the dots alternates from red to black going from one person to the next.

Savannah River Site Internal Co-Exposure In Vitro Completeness Check – Americium (Am)

June 21, 2021

Introduction

The purpose of this report is to document activities related to a completeness test of the americium in vitro logbook dataset for this revision of this document. The americium dataset was reentered to correctly handle associated samples for Revision 06 of this document, so it was decided that a formal completeness test was necessary for the americium in vitro dataset.

The database completeness process contains two efforts. Part 1 is a claim-level check that tests whether an individual who had at least one result in the period of interest is in fact included in the dataset. Part 2, a result-level check, is performed to ensure that all sample results for a sample of individuals are included in the dataset. This report outlines the findings of these completeness tests for americium in vitro data.

Part 1 (Claim-Level) Completeness Check Results

The americium in vitro database used for this document was compiled separately from other SRS nuclides. The americium dataset was transcribed from original logbooks obtained during data capture activities at SRS. The data were not a result of extracting data from NOCTS as is used for most of the other in vitro datasets. Therefore, the completeness testing protocol involved creating a logbookbased employee list for comparison to NOCTS claim information. This logbook mapping process was largely completed outside of the completeness effort. Employee mapping involved recording variations on Last Name, First Name, Middle Initial, and PRID from logbooks and NOCTS documents.

A Master List of SRS NOCTS claim IDs with at least 1 day of employment before 1991 was developed and reviewed for the presence of at least 1 americium result. As a result of this review, 489 claims were noted as containing americium results in both the transcribed logbook dataset and NOCTS claim data. These 489 claims are subject to Part 2 completeness testing.

Part 2 (Result-Level) Completeness Check Results

Limiting the Part 2 claim pool to 489 claimants from the claim-level test, the ORAU Team developed a testing plan for this dataset. The test requires that a minimum number of claims (102 from Figure A-6) and a minimum number of records (1,132 from Figure A-7) be sampled. By sampling 102 claims, the 1,132 record threshold was not yet met. Six additional claims were sampled to reach the 1,132 record threshold. A list of 108 claims was randomly chosen from the original set of 489 claims. The claim files for these 108 claims were checked. Figures A-6 through A-9 summarize this information.

Note that 3 of the 108 sampled claims did not have relevant results, so the results are reported for 105 claims. Also note that the final number of opportunities does not exceed the 1,132 threshold. This was due to using the number of rows in the logbook to estimate the number of NOCTS rows. Failing to meet these thresholds with the final results causes the confidence interval to be slightly wider than if the thresholds were met, but the final confidence interval here (even though it is wider than the ideal case) is still below 5%, so there are no issues with completeness.

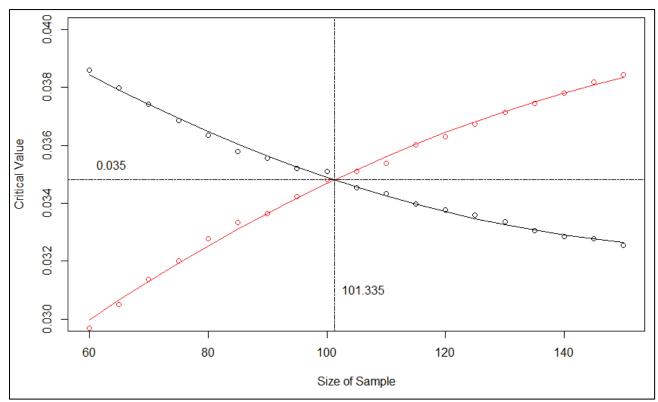


Figure A-6. Plot to determine the minimum number of claims to be sampled.

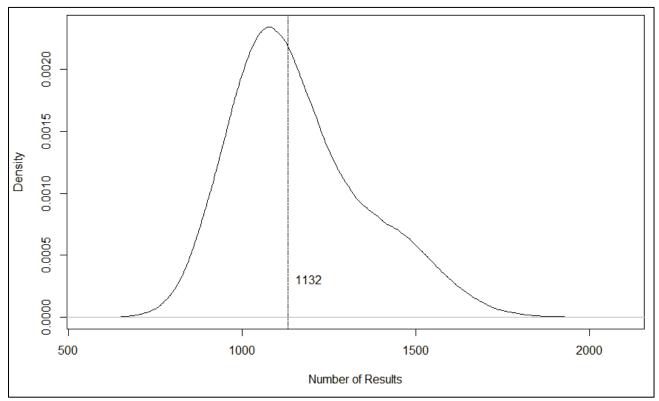


Figure A-7. Plot to determine the minimum number of records to be sampled.

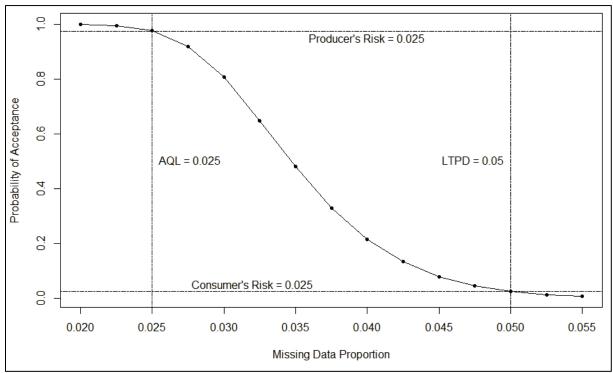


Figure A-8. OC curve for 108 individuals.

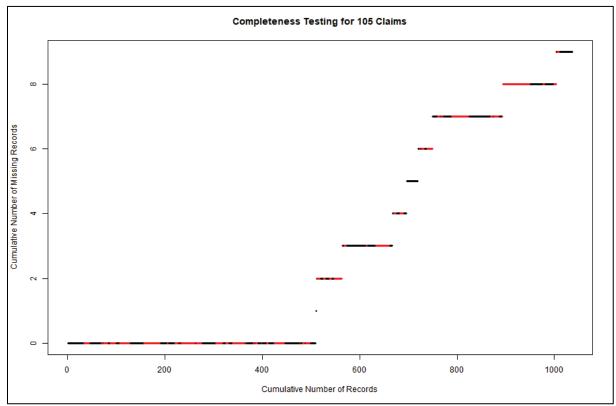


Figure A-9. Sequential plot of missing records for 105 individuals. The color of the dots is alternated from black to red going from one person to the next.

Document No. ORAUT-TKBS-0003-7 Effective Date: 03/05/2024 Page 129 of 297 Revision No. 00

ATTACHMENT A QUALITY ASSURANCE SUMMARY (continued)

Results

9 missing / 1,037 opportunities = 0.87% We are 95% confident that the missing record rate is between 0.39% and 1.66%.

SRS NOCTS In Vitro Data QA Summary

May 9, 2017

Critical Fields Plan

All Fields Plan

Fields

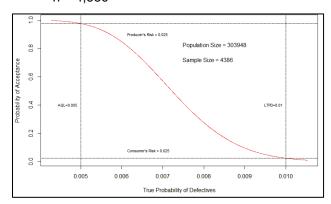
Isotope

<

Result

Sampling Plan

N = 303.948


AQL = 0.5%

LTPD = 1%

 α = 0.025 (producer's risk or ORAUT risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 4.386

Results

11 errors / 4,386 checked = 0.25%

We are at least 95% confident that the critical fields transcription error rate is between 0.13% and 0.45%.

Evaluation

The critical fields 95% confidence interval is entirely below 1%. There is no issue with the critical field transcription error rate in this SRS in vitro dataset.

Fields

Critical Fields

Last Name (nonblank

First Name (nonblank)

Middle Name (nonblank)

PR (nonblank)

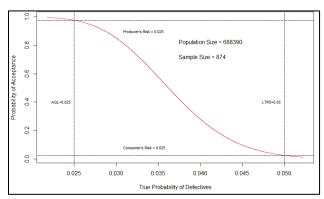
Date

Units (nonblank)

Area (nonblank)

Sampling Plan

N = 688.390


AQL = 2.5%

LTPD = 5%

 $\alpha = 0.025$ (producer's risk or ORAUT risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 874

Results

4 errors / 874 checked = 0.46%

We are at least 95% confident that the all fields transcription error rate is between 0.13% and 1.17%.

Evaluation

The all fields 95% confidence interval is entirely below 5%. There is no issue with the all field transcription error rate in this SRS in vitro dataset.

SRS Combined In Vivo QA Report

August 28, 2017

Combined (old and new entries) In-Vivo Data – subset for use in OTIB-0081 Rev 4 (Spreadsheet called "SRS in-vivo subset 080717.csv")

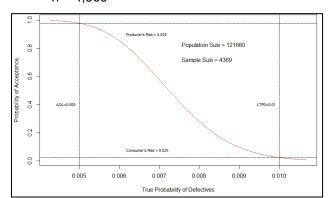
Critical Fields Plan

All Fields Plan

Н	٠١	е	ld	S

Form Type (non-blank)

Nuclide


gross counts (non-blank)
bkg counts (non-blank)
net counts (non-blank)
NET c/m (non-blank)
DIFF counts (non-blank)
Result (nci) (non-blank)
MDA @95%CL (counts) (non-bla

MDA @95%CL (counts) (non-blank) MDA @95%CL (nCi) (non-blank) Lung Burden (nCi) (non-blank)

Sampling Plan

N = 121,660 AQL = 0.5% LTPD = 1%

 α = 0.025 (producer's risk or ORAUT risk) β = 0.025 (consumer's risk or DCAS risk) α = 4.369

Results

19 errors / 4,374 checked = 0.43%

We are at least 95% confident that the critical field transcription error rate is between 0.26% and 0.67%.

Five more critical fields were checked than what was prescribed by the sampling plan. This only improves the critical field transcription error rate interval.

Fields

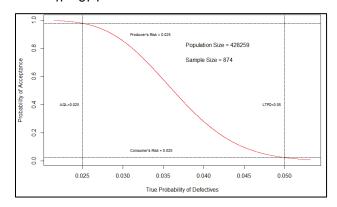
Critical Fields Last name First Name Middle Name

PR

Occupation Title (non-blank) Position Title (non-blank)

Date Dept location

Type (WBC or CC)


Reason Detector

Comments (non-blank)

Sampling Plan

N = 428,259 AQL = 2.5% LTPD = 5%

 α = 0.025 (producer's risk or ORAUT risk) β = 0.025 (consumer's risk or DCAS risk) n = 874

Results

24 errors / 874 checked = 2.75%

We are at least 95% confident that the all field transcription error rate is between 1.77% and 4.06%.

Not counting payroll prefix issues as errors:

10 errors / 874 checked = 1.14%

We are at least 95% confident that the all field transcription error rate (not counting payroll prefix issues as errors) is between 0.55% and 2.09%

Document No. ORAUT-TKBS-0003-7	Revision No. 00	Effective Date: 03/05/2024	Page 132 of 297

Evaluation

The critical fields interval is entirely below 1%, and the all fields interval is entirely below 5%. There is no issue with the transcription error rates for the SRS in-vivo dataset.

SRS Np Logbooks QA Summary

February 26, 2018

Critical Fields Plan

All Fields Plan

Fields

Data 1 Payroll ID#

Pu results (nonblank)

Pu units (nonblank)

Np results (nonblank)

Np units (nonblank)

Data 2

(nonblank)

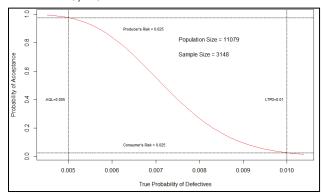
Report (nonblank)

Payroll ID#

dpm/1.5L (10 columns)

Sampling Plan

N = 11,079


AQL = 0.5%

LTPD = 1%

 α = 0.025 (producer's risk or ORAUT risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 3,148

Results

27 errors / 3.148 checked = 0.86%

We are at least 95% confident that the critical fields transcription error rate is between 0.61% and 1.18%.

Excluding payroll prefix issues:

21 errors / 3,148 checked = 0.67%

We are at least 95% confident that the critical fields transcription error rate (excluding payroll prefix issues) is between 0.45% and 0.96%.

Fields

Data 1

Critical fields

Area

Employee Last Name

Employee First Initial

Employee Middle Initial

Bottle Date (nonblank)

Rec'd Date (nonblank)

Comment (nonblank)

Data 2

Critical fields

Employee Last Name

Employee First Initial

Employee Middle Initial

Volume

Area

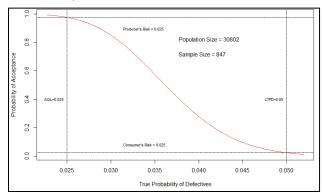
Bottle Date

Type

Remarks (nonblank)

Sampling Plan

N = 30,802


AQL = 2.5%

LTPD = 5%

 $\alpha = 0.025$ (producer's risk or ORAUT risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 847

Results

8 errors / 932* checked = 0.86%

We are at least 95% confident that the all fields transcription error rate is between 0.38% and 1.67%.

* The sampling plan requires 847 fields to be checked. The other 85 fields were checked because of a coding error in the sampling plan. The additional 85 fields help to narrow the confidence interval.

Critical Fields Plan

Offical Fields I

Critical Fields Evaluation

6 of the errors were PRID prefix issues that have no impact on the usability of the data for an error rate point estimate of 0.47%. Examples of prefix issues that have no impact on the data use are using "0-," "1-," "T-," or no prefix interchangeably; presence of a prefix when there was not a prefix on the source data and vice versa (although present in other locations and accurate); and substitution of craft codes for a Roll code of 4-, 5-, or 6- or vice versa. Because these errors have no effect on the usability of the data, they were excluded from the calculation of the error rate.

The critical fields 95% confidence interval (excluding payroll prefix issues) is entirely below 1%.

All Fields Plan

All Fields Evaluation

The all fields 95% confidence interval is entirely below 5%. There are no issues with the transcription error rates in these SRS Np logbook datasets.

SRS Am QA Summary

July 21, 2021

Critical Fields Plan

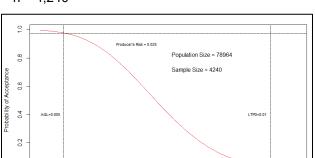
All Fields Plan

Fields

Volume (non-blank)
discResult (1 through 10) (combination of IsLip,
IsIllegible, LessThan, and numeric result)
(non-blank)
Am_discResultUnits (non-blank)
report (combination of IsLip, IsIllegible,

LessThan, and numeric report) (non-blank)

Am_reportUnits (non-blank)


a_h_ (non-blank)

Sampling Plan

N = 78,964 AQL = 0.5% LTPD = 1%

 α = 0.025 (producer's risk or ORAU Team risk) β = 0.025 (consumer's risk or DCAS risk)

n = 4.240

Results

22 errors / 4,240 checked = 0.52%

0.006

0.005

We are at least 95% confident that the critical fields transcription error rate is between 0.33% and 0.78%.

0.007

0.008

True Probability of Defectives

0.009

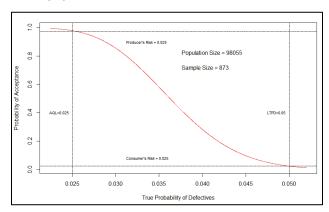
0.010

Evaluation

The critical fields 95% confidence interval is entirely below 1%. There is no issue with the critical field transcription error rate in this SRS americium dataset.

Fields

Critical Fields date (combination of bottleDate and dateIllegibleType)


Sampling Plan

N = 98,055 AQL = 2.5% LTPD = 5%

 α = 0.025 (producer's risk or ORAU Team risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 873

Results

2 errors / 873 checked = 0.23%

We are at least 95% confident that the all fields transcription error rate is between 0.03% and 0.82%.

Evaluation

The all fields 95% confidence interval is entirely below 5%. There is no issue with the all field transcription error rate in this SRS americium dataset.

SRS Tritium QA Summary

May 20, 2016

Tritium Data (Access database titled "SRS NOCTS Triitum 052710 postQA.mdb" using the table titled "QC copy of SRS NOCTS Tritium 052710") located at (O:\Coworker Data\Working Files\SRS\Coworker Study)

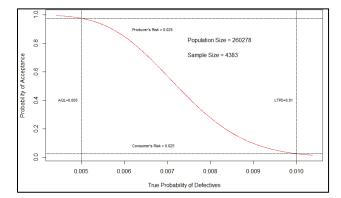
Critical Fields Plan

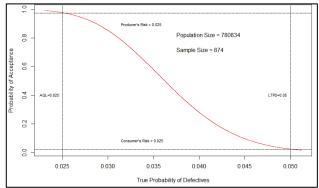
All Fields Plan

Fields Fields Result

Result Date Area

Sampling Plan


N = 260.278AQL = 0.5%LTPD = 1% α = 0.025 (producer's risk or ORAUT risk) β = 0.025 (consumer's risk or DCAS risk) n = 4.383


Sampling Plan

N = 780.834AQL = 2.5%LTPD = 5%

 α = 0.025 (producer's risk or ORAUT risk) β = 0.025 (consumer's risk or DCAS risk)

n = 874

Results

14 errors / 4,383 checked = 0.32%

We are at least 95% confident that the critical field transcription error rate is between 0.18% and 0.53%.

Results

2 errors / 874 checked = 0.23%

We are at least 95% confident that the all field transcription error rate is between 0.03% and 0.82%.

Evaluation

The critical field interval is entirely below 1%. The all field interval is entirely below 5%.

There are no issues with the transcription error rates in this SRS tritium dataset.

Note: 4 of the 14 critical field errors are results from the same claim entered as <0.05 that should be <0.5.

SRS In Vitro CTW QA Summary

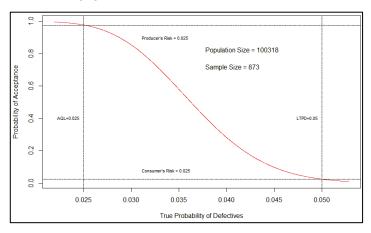
September 17, 2018

QA of SRS in vitro data CTW determination. The CTW determinations based on the Master Occupation Table and the CTW Designation Instructions were checked against the worker history cards (or CATI or personnel dosimetry quarterly reports).

All Fields Plan

Fields

Rev4CTW


Sampling Plan

N = 100,318 AQL = 2.5% LTPD = 5%

 α = 0.025 (producer's risk or ORAUT risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 873

Results

10 errors / 873 checked = 1.15%

We are at least 95% confident that the classification error rate between CTW determination and the worker history cards is between 0.55% and 2.09%.

Evaluation

The CTW determination and worker history cards classification error rate interval is entirely below 5%. There is no issue with the classification error rate.

Note: Most of the errors were due to individuals changing occupations from CTW to non-CTW, or vice versa, during their career.

SRS In Vivo CTW QA Summary

September 25, 2018

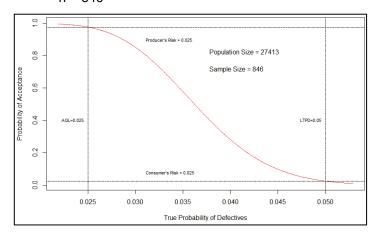
QA of SRS in vivo data CTW determination. The CTW determinations based on the Master Occupation Table and the CTW Designation Instructions were checked against the worker history cards (or claimant interviews or personnel dosimetry quarterly reports).

All Fields Plan

Fields

Rev4CTW

Sampling Plan


N = 27,413AQL = 2.5%

LTPD = 5%

 α = 0.025 (producer's risk or ORAUT risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 846

Results

7 errors / 846 checked = 0.83%

We are at least 95% confident that the classification error rate between CTW determination and the worker history cards is between 0.34% and 1.68%.

Evaluation

The CTW determination and worker history cards classification error rate interval is entirely below 5%. There is no issue with the classification error rate.

Note: Most of the errors were due to individuals changing occupations from CTW to nonCTW, or vice versa, during their career.

SRS Np Logbook CTW QA Summary

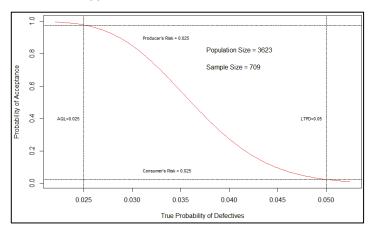
October 2, 2018

QA of SRS Np logbook data CTW determination. The CTW determinations based on the Master Occupation Table and the CTW Designation Instructions were checked against the worker history cards (or CATI or personnel dosimetry quarterly reports).

All Fields Plan

Fields

Rev4CTW


Sampling Plan

N = 3,623 AQL = 2.5% LTPD = 5%

 α = 0.025 (producer's risk or ORAUT risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 709

Results

2 errors / 709 checked = 0.28%

We are at least 95% confident that the classification error rate between CTW determination and the worker history cards is between 0.06% and 0.94%.

Evaluation

The CTW determination and worker history cards classification error rate interval is entirely below 5%. There is no issue with the classification error rate.

Note: Most of the errors were due to individuals changing occupations from CTW to nonCTW, or vice versa, during their career.

SRS Am Logbook CTW QA Report

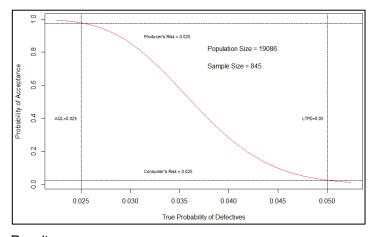
August 6, 2021

QA of SRS Am logbook data CTW determination. The CTW determinations based on the Master Occupation Table and the CTW Designation Instructions were checked against the worker history cards (or claimant interviews or personnel dosimetry quarterly reports).

All Fields Plan

Fields

Rev6CTW


Sampling Plan

N = 19,086 AQL = 2.5% LTPD = 5%

 α = 0.025 (producer's risk or ORAUT risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 845

Results

4 errors / 845 checked = 0.47%

We are at least 95% confident that the classification error rate between CTW determination and the worker history cards is between 0.14% and 1.19%.

Evaluation

The CTW determination and worker history cards classification error rate interval is entirely below 5%. There is no issue with the classification error rate.

Revision No. 00

SRS Tritium CTW QA Summary

July 14, 2016

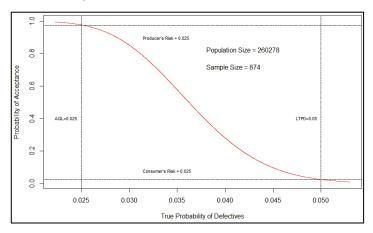
QA of tritium data CTW determination. The CTW determinations based on the Master Occupation Table and the CTW Designation Instructions were checked against the worker history cards (or claimant interviews or personnel dosimetry quarterly reports).

All Fields Plan

Fields

Rev3CTW

Sampling Plan


N = 260,278AQL = 2.5%

LTPD = 5%

 α = 0.025 (producer's risk or ORAUT risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 874

Results

6 errors / 874 checked = 0.69%

Evaluation

We are at least 95% confident that the classification error rate between CTW determination and the worker history cards is between 0.25% and 1.49%.

The CTW determination and worker history cards classification error rate interval is entirely below 5%. There is no issue with the classification error rate.

Note: Five of the errors were the CTW determination algorithm calling the person a CTW when the worker history cards said they were not; one was the algorithm calling the person a nonCTW when they were.

SRS Np Logbooks QA Report

May 20, 2016

Np Logbooks (Spreadsheet called 'Compiled_SRS Np Logbook_WHC_07202011r0 Mike.xlsx')

Critical Fields Plan

All Fields Plan

<u>Fields</u>	Payroll ID #
	Pu results (nor

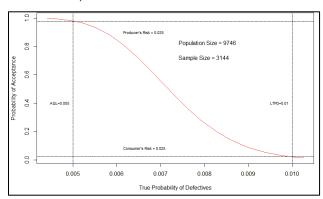
Pu results (non-blank) Pu units (non-blank) Np results (non-blank) Np units (non-blank) Fields
Area
Employee Last Name
Employee First Initial
Employee Middle Initial
Occupation Title
Bottle Date

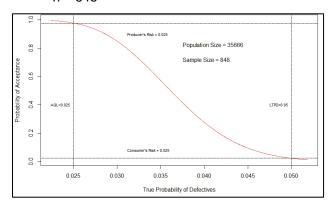
Received Date
Comment (non-blank)

Sampling Plan

N = 9,746 AQL = 0.5% LTPD = 1%

 α = 0.025 (producer's risk or ORAUT risk) β = 0.025 (consumer's risk or DCAS risk)


n = 3,144


Sampling Plan

N = 35,666 AQL = 2.5% LTPD = 5%

 α = 0.025 (producer's risk or ORAUT risk) β = 0.025 (consumer's risk or DCAS risk)

n = 848

Results

21 errors / 3,144 checked = 0.67%

We are at least 95% confident that the critical field transcription error rate is between 0.46% and 0.95%.

Results

13 errors / 848 checked = 1.53%

We are at least 95% confident that the all field transcription error rate is between 0.83% and 2.59%.

Evaluation

The critical field interval is entirely below 1%. The all field interval is entirely below 5%.

There are no issues with the transcription error rates in this SRS tritium dataset.

Note: Of the 21 critical errors, 10 were payroll ID prefix issues. Six of the payroll ID prefix issues had to do with the presence or absence of a "0-" prefix.

SRS NOCTS WBC QA Summary

June 3, 2016

Critical Fields Plan

All Fields Plan

Fields

PR

Form Type (nonblank)

Nuclide

gross counts (nonblank)

bkg counts (nonblank) net counts (nonblank)

NET c/m (nonblank)

DIFF counts (nonblank)

Result (nCi) (nonblank)

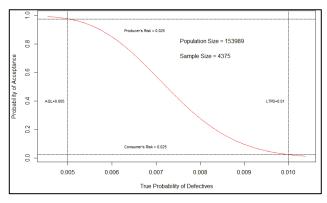
MDA @95%CL (counts) (nonblank)

MDA @95%CL (nCi) (nonblank)

Lung Burden (nCi) (nonblank)

Sampling Plan

N = 153,989


AQL = 0.5%

LTPD = 1%

 α = 0.025 (producer's risk or ORAU Team risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 4,375

Results

535 errors / 4,375 checked = 12.23%

We are at least 95% confident that the critical fields transcription error rate is between 11.29% and 13.22%.

Not counting payroll prefix issues as errors:

pt. est. = 1.37%

95% confidence interval: (1.05%, 1.76%)

Counting errors in columns other than PRID and PRID errors that impact CTW determination:

pt. est. = 0.62%

95% confidence interval: (0.41%, 0.89%)

Fields

Critical Fields

Last Name

First Name

Middle Name

0 - - · · · - +: - · - T:4

Occupation Title

Position Title

Date

Dept

Location

Type (WBC or CC)

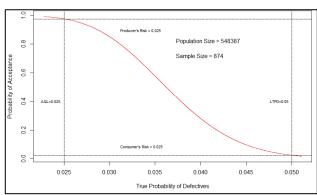
Reason

Detector

Comments (nonblank)

Sampling Plan

N = 548,387


AQL = 2.5%

LTPD = 5%

 α = 0.025 (producer's risk or ORAU Team risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 874

Results

45 errors / 874 checked = 5.15%

We are at least 95% confident that the all fields transcription error rate is between 3.78% and 6.83%.

Not counting payroll prefix issues as errors:

pt. est. = 2.17%

95% confidence interval: (1.31%, 3.37%)

Critical Fields Plan

Critical Fields Evaluation

PRID issues comprise the majority of the transcription errors, 523 of the 535 errors identified, although PRID fields were less than 25% of the total number of critical fields sampled. There were 12 non-PRID errors out of 3,373 non-PRID critical fields sampled for a non-PRID error rate point estimate of 0.4%.

There were 523 PRID errors out of 1,002 PRID critical fields sampled for an error rate point estimate of 52%. 475 of the 523 were PRID prefix issues that have no impact on the data use for an error rate point estimate of 47%. Examples of prefix issues that have no impact on the data use are using "0-," "1-," "T-," or no prefix interchangeably; presence of a prefix when there was not a prefix on the source data and vice versa (although present in other locations and accurate); and substitution of craft codes for a Roll code of 4-, 5-, or 6-or vice versa.

Of the 48 remaining (523-475) PRID errors, only 15 of the errors affected use of the data for CTW determination or for proper identification of the person. Most of the errors were either simple transposition errors already caught in subsequent data cleanup or instances where a worker was promoted from operator, laboratory technician, or similar job to a salaried position with no change in CTW status. However, there is still sufficient information to properly identify the person by claim number, name, or corrected PRID. These types of errors, while errors, do not affect the subsequent use of the data. CTW status is unchanged, and the use of the data for calculation of bioassay statistics is not affected.

Therefore, the set of all errors can be refined to the subset of errors that affect data use. There are 27 such errors, the 12 non-PRID errors and the 15 PRID errors that affect CTW determination or proper identification of the person. The error rate for this subset of errors is 0.62% with a 95% confidence interval of 0.41% to 0.89%, below the desired 1% error rate acceptance criteria.

All Fields Plan

All Fields Evaluation

As with the critical fields, PRID prefix issues that have no impact on the data use comprised the majority of the all fields errors, 26 of 45 errors. Although the overall error rate is above the desired acceptance rate of 5%, excluding these PRID prefix errors reduces the error rate to 2.17% with a 95% confidence interval of 1.31% to 3.37%, below the desired 5% error rate acceptance criteria. Since this error rate is below the desired acceptance criteria, no further evaluation of the significance of the non-PRID prefix errors was performed.

ATTACHMENT A QUALITY ASSURANCE SUMMARY (continued)

SRS Mixed FP Gamma QA Summary

June 6, 2016

Critical Fields Plan

All Fields Plan

_	1/	` \	\sim	
_	ıt	-:1		

PR

Fields

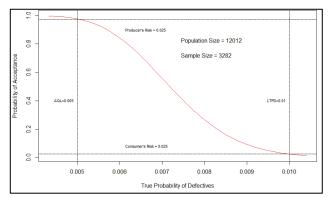
PR Date Last Name First Name Middle Name Occupation Title

Sampling Plan

N = 12,012AQL = 0.5%LTPD = 1%

 $\alpha = 0.025$ (producer's risk or ORAU Team risk) β = 0.025 (consumer's risk or DCAS risk)

n = 3,282


Sampling Plan

LTPD = 5%

 α = 0.025 (producer's risk or ORAU Team risk)

 β = 0.025 (consumer's risk or DCAS risk)

n = 849

Results

1,980 errors / 3,282 checked = 60.33%

We are at least 95% confident that the critical fields transcription error rate is between 58.88% and 61.75%.

Not counting payroll prefix issues as errors:

pt. est. = 1.34%

95% confidence interval: (1.03%, 1.72%)

Counting errors in columns other than PRID and PRID errors that affect CTW determination and person identification:

pt. est. = 0.43%

95% confidence interval: (0.27%, 0.67%)

Results

89 errors / 849 checked = 10.48%

We are at least 95% confident that the all fields transcription error rate is between 8.52% and 12.73%.

Not counting payroll prefix issues as errors:

pt. est. = 0.12%

95% confidence interval: (0.0042%, 0.65%)

ATTACHMENT A QUALITY ASSURANCE SUMMARY (continued)

Critical Fields Plan

Critical Fields Evaluation

PRID prefix issues comprise the majority of the transcription errors, 1,936 of the 1,980 errors identified.

The 1,936 PRID prefix errors have no impact on the data use and have an error rate point estimate of 59%. Examples of prefix issues that have no impact on the data use are using "0-," "1-," "T-," or no prefix interchangeably; presence of a prefix when there was not a prefix on the source data and vice versa (although present in other locations and accurate); and substitution of craft codes for a Roll code of 4-, 5-, or 6-or vice versa.

Of the 44 remaining (1980 to 1936) PRID errors, only 14 of the errors affected use of the data for CTW determination or for proper identification of the person. Most of the errors were either simple transposition errors already caught in subsequent data cleanup or were instances where a worker was promoted from operator, laboratory technician, or similar job to a salaried position with no change in CTW status. However, there is still sufficient information to properly identify the person by claim number, name, or corrected PRID. These types of errors, while errors, do not affect the subsequent use of the data. CTW status is unchanged, and the use of the data for calculation of bioassay statistics is not affected.

Therefore, the set of all errors can be refined to the subset of errors that affect data use. There are 14 such errors. The error rate for this subset of errors is 0.43% with a 95% confidence interval of 0.27% to 0.67%, below the desired 1% error rate acceptance criteria.

All Fields Plan

All Fields Evaluation

As with the critical fields, PRID prefix issues that have no impact on the data use comprised the majority of the all fields errors, 88 of 89 errors. Although the overall error rate is above the desired acceptance rate of 5%, excluding these PRID prefix errors leaves only a single error and reduces the error rate to 0.12% with a 95% confidence interval of 0.0042% to 0.65%, below the desired 5% error rate acceptance criteria.

ATTACHMENT A QUALITY ASSURANCE SUMMARY (continued)

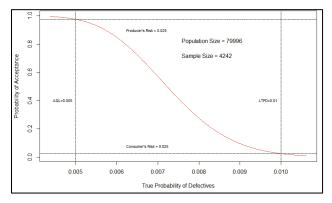
SRS Am QA Report

June 16, 2016

RPRT-0055 Data (Spreadsheet called "REVIEWED_Am Final Compiled_SRS WHC 06302011r2 Ready Updated rev 3 051616.xlsx")

Critical Fields Plan

All Fields Plan


<u>Fields</u>	Payroll ID#
	Pu dpm/1.5L (12 columns) (non-blank)
	Pu Report (non-blank)
	EU dpm/1.5L (10 columns) (non-blank)
	EU Report (non-blank)
	Am dpm/1.5L (10 columns) (non-blank)
	Am Report (non-blank)
	Np dpm/1.5L (10 columns) (non-blank)
	Np Report (non-blank)

Sampling Plan

N = 79,996 AQL = 0.5% LTPD = 1%

 α = 0.025 (producer's risk or ORAUT risk) β = 0.025 (consumer's risk or DCAS risk)

n = 4,242

Results

25 errors / 4,242 checked = 0.59%

We are at least 95% confident that the critical field transcription error rate is between 0.39% and 0.86%.

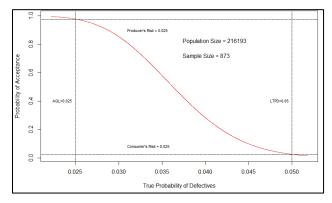
Evaluation

The critical field interval is entirely below 1%. There is no issue with the critical field transcription error rate in this SRS americium dataset.

Fields Critical Fields

Employee Last Name
Employee First Initial
Employee Middle Initial
Volume
Area

Occupation Title Bottle Date


Remarks (non-blank)

Sampling Plan

N = 216,193 AQL = 2.5% LTPD = 5%

 α = 0.025 (producer's risk or ORAUT risk) β = 0.025 (consumer's risk or DCAS risk)

n = 873

Results

6 errors / 873 checked = 0.69%

We are at least 95% confident that the all field transcription error rate is between 0.25% and 1.49%.

Evaluation

The all field interval is entirely below 5%. There is no issue with the all field transcription error rate in this SRS americium dataset.

ATTACHMENT B BIOASSAY DATA TYPES AND FREQUENCIES

LIST OF TABLES

TABL	<u>E</u> <u>TITLE</u>	<u>PAGE</u>
B-1	SRDB Ref IDs for REAC/TS chelation data	149
B-2	1968 bioassay frequencies	150
B-3	1970 bioassay frequencies	151
B-4	Early 1971 bioassay frequencies	152
	Late 1971 bioassay frequencies	
	1976 bioassay frequencies	
B-7	1985 bioassay frequencies	158
	1989 bioassay frequencies	

Table B-1. SRDB Ref IDs for REAC/TS chelation data.

| Ref ID |
|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 71929 | 72155 | 72147 | 72211 | 72256 | 72333 | 72418 | 72842 | 73044 |
| 71930 | 72157 | 72148 | 72212 | 72259 | 72334 | 72421 | 72844 | 73047 |
| 71933 | 71977 | 72158 | 72213 | 72260 | 72335 | 72428 | 72848 | 73049 |
| 71934 | 71978 | 72159 | 72214 | 72262 | 72336 | 72430 | 72851 | 73050 |
| 71936 | 71979 | 72161 | 72216 | 72263 | 72340 | 72431 | 72852 | 73051 |
| 71939 | 71980 | 72163 | 72217 | 72264 | 72341 | 72434 | 72857 | 73060 |
| 71940 | 71981 | 72166 | 72218 | 72265 | 72342 | 72451 | 72858 | 73064 |
| 71941 | 71982 | 72167 | 72219 | 72266 | 72344 | 72452 | 72860 | 73069 |
| 71943 | 71983 | 72169 | 72220 | 72267 | 72345 | 72455 | 72861 | 73071 |
| 71945 | 71984 | 72171 | 72221 | 72269 | 72346 | 72456 | 72862 | 73072 |
| 71946 | 71985 | 72173 | 72222 | 72270 | 72347 | 72460 | 72863 | 73075 |
| 71952 | 71986 | 72174 | 72223 | 72274 | 72348 | 72461 | 72865 | 73077 |
| 71953 | 71987 | 72175 | 72224 | 72275 | 72350 | 72462 | 72866 | 73080 |
| 71954 | 71988 | 72178 | 72226 | 72276 | 72351 | 72464 | 72867 | 73082 |
| 71955 | 71989 | 72179 | 72228 | 72301 | 72352 | 72466 | 72868 | 73083 |
| 71956 | 71990 | 72181 | 72229 | 72303 | 72361 | 72467 | 72873 | 73088 |
| 71957 | 71991 | 72183 | 72230 | 72306 | 72363 | 72470 | 72875 | 73091 |
| 71959 | 71995 | 72186 | 72231 | 72308 | 72364 | 72477 | 72879 | 73092 |
| 71960 | 71998 | 72188 | 72233 | 72310 | 72365 | 72478 | 72881 | 73095 |
| 71961 | 72001 | 72190 | 72234 | 72311 | 72366 | 72479 | 72883 | 73099 |
| 71963 | 72004 | 72192 | 72241 | 72313 | 72369 | 72647 | 72885 | 73108 |
| 71964 | 72007 | 72193 | 72242 | 72314 | 72372 | 72650 | 72889 | 73112 |
| 71965 | 72010 | 72194 | 72243 | 72316 | 72377 | 72651 | 72890 | 73121 |
| 71967 | 72013 | 72195 | 72244 | 72318 | 72382 | 72652 | 72891 | 73125 |
| 71969 | 72019 | 72196 | 72245 | 72321 | 72386 | 72654 | 72935 | 73128 |
| 71970 | 72116 | 72197 | 72246 | 72323 | 72388 | 72821 | 72936 | 75412 |
| 71971 | 72128 | 72199 | 72247 | 72324 | 72391 | 72824 | 73026 | 72656a |
| 71972 | 72131 | 72200 | 72248 | 72325 | 72394 | 72828 | 73031 | 72813ª |
| 71973 | 72134 | 72202 | 72249 | 72328 | 72406 | 72831 | 73035 | 165427a |
| 71974 | 72137 | 72205 | 72252 | 72330 | 72408 | 72833 | 73036 | None |
| 71975 | 72138 | 72206 | 72253 | 72331 | 72413 | 72838 | 73039 | None |
| 71976 | 72144 | 72209 | 72255 | 72332 | 72417 | 72839 | 73041 | None |

a. Used for americium only.

Table B-2. 1968 bioassay frequencies (samples per year by analysis type) [DuPont 1968a].^a

	Description	Pu	FP	EU	U	NP
Category	Minimum potential (except HTO). Personnel assigned to 232-H, 234-H, 284-F & -H, 704-F & -H, 706-F & -H, 717-F,		г Р 1 еа.		1 ea.	
Α	and 235-F nonprocess sections; patrolmen.	1 ea. 3 yr		1 ea.		1 ea.
В	221-H fourth level. Separations senior supervisors and above; all separations technology personnel, control room	3 yı 1	3 yr	3 yr 1	3 yr N/A	3 yr N/A
Б	operators, and secretaries.		'	I	IN/A	IN/A
С	221-H regulated areas and H-Area outside facilities. All personnel assigned to H-Area outside facilities; all utility	1	2	2 ^b	N/A	N/A
	operators, janitors, power operators, and selected E&I and maintenance mechanics assigned to 221-H regulated areas.					1
D	221-H maximum potential (canyons). All auxiliary operators, crane process operators, HP personnel, and selected E&I	2	2	2 ^b	N/A	N/A
	and maintenance mechanics.					1
E	B-Line, H Area. All assigned personnel.	4	1	N/A	N/A	2
F	235-F. All personnel assigned to process section of building.	4	1	N/A	N/A	N/A
G	221-F fourth level. Separations senior supervisors and above; all separations technology personnel, control room	1	1	N/A	N/A	N/A
	operators, and secretaries.					ĺ
Н	221-F regulated areas, 723-F, 643-G and 717-A. All personnel assigned to 723-F and 634-G; all janitors, power	1	2	N/A	N/A	N/A
	operators, and selected E&I and maintenance mechanics assigned to 221-F regulated areas; all 717-A field crews					ł
	assigned.					ł
I	221-F maximum potential (canyons). All auxiliary operators, utility operators, crane process operators, HP personnel,	2	2	N/A	N/A	N/A
	and selected E&I and maintenance mechanics.					<u> </u>
J	JB-Line and B-Line, F Area. All assigned personnel.	4	1	N/A	N/A	N/A
K	Outside facilities, F Area. All assigned personnel.	1	2	N/A	4	N/A
L	772-F, UO ₃ section. All assigned personnel.	1	1	1	4	N/A
M	772-F (excluding UO₃ section). All assigned personnel.	4	2	2 ^b	1	N/A
N	313 and 320-M.	N/A	N/A	N/A	1	N/A
0	322-M. All assigned personnel.	N/A	N/A	1	1	N/A
Р	322-M. Personnel processing samples from field.	N/A	1	1	1	N/A
Q	321-M. Machine casting.	N/A	N/A	4	N/A	N/A
R	321-M. Service groups.	N/A	N/A	2	N/A	N/A
S	321-M. All assigned personnel.	N/A	N/A	1	N/A	N/A
Т	100 Areas, 105 Buildings. Reactor department personnel from C&D crews, purification, and pump room observation;	(c)	(c)	(c)	(c)	(c)
	control room and monitor operators; all 100-Area HP, maintenance, and T&T personnel; all E&I, laboratory, and HP	` '		,	` ,	l `´
	personnel assigned to 105 buildings; T&T personnel in central shops; reactor tech personnel as designated by					ł
	supervision.					ł
U	773-A. Radiation control and maintenance.	1	1	N/A	1	N/A
V	773-A. Area maintenance mechanics.	1	1	1	1	N/A
W	773-A. Special group.	(d)	(d)	(d)	(d)	(d)
Х	700 Area. Shop personnel provide samples as considered advisable by 3/700-Area survey.	(e)	(e)	(e)	(e)	(e)
						$ \leftarrow$

- a. N/A = not applicable; C&D = Construction and Demolition; T&T = Transportation and Traffic.
- b. Personnel are sampled for applicable isotope at frequency shown during operation of plutonium-uranium extraction (PUREX) and (HM).
- c. IA and FP.
- d. IA
- e. As considered advisable by 3/700-Area survey.

Table B-3. 1970 bioassay frequencies (samples per year by analysis type) [DuPont 1970]. a,b

	1070 bloassay frequencies (samples per year by a rays type) [Duf off 1070].					ND
Category	Description	Pu	FP	EU	U	NP
Α	Minimum potential (except HTO). Personnel assigned to 232-H, 234-H, 284-F & -H, 704-F & -H, 706-F & -H, 717-F,	1 ea.				
	and 235-F nonprocess sections; patrolmen.	3 yr				
В	221-H fourth level. Separations senior supervisors and above; all separations technology personnel, control room operators, and secretaries.	1	1	1	N/A	N/A
С	221-H regulated areas and H-Area outside facilities. All personnel assigned to H-Area outside facilities; all utility	1	2	2	N/A	N/A
	operators, janitors, power operators, and selected E&I and Maintenance Mechanics assigned to 221-H regulated areas.					
D	221-H maximum potential (canyons). All auxiliary operators, crane process operators, HP personnel, and selected E&I and Maintenance Mechanics.	2	2	2	N/A	N/A
E	B-Line, H Area. All assigned personnel.	4	1	N/A	N/A	2
F	235-F. All personnel assigned to process section of building.	4	1	N/A	N/A	N/A
G	221-F fourth level. Separations senior supervisors and above; all separations technology personnel, control room	1	1	N/A	N/A	N/A
	operators, and secretaries.					
Н	221-F regulated areas , 723-F , 643-G and 717-A . All personnel assigned to 723-F and 634-G; all janitors, power operators, and selected E&I and Maintenance Mechanics assigned to 221-F regulated areas; all 717-A field crews assigned.	1	2	N/A	N/A	N/A
1	221-F maximum potential (canyons). All auxiliary operators, utility operators, crane process operators, HP personnel,	2	2	N/A	N/A	N/A
	and selected E&I and Maintenance Mechanics.					
J	JB-Line and B-Line, F Area. All assigned personnel.	4	1	N/A	N/A	N/A
K	Outside facilities, F Area. All assigned personnel.	1	2	N/A	4	N/A
L	772-F, UO ₃ section. All assigned personnel.	1	1	1	4	N/A
M	772-F (excluding UO ₃ section). All assigned personnel.	4	2	2	1	N/A
N	313 and 320-M.	N/A	N/A	N/A	1	N/A
0	322-M. All assigned personnel.	N/A	N/A	1	1	N/A
Р	322-M. Personnel processing samples from field.	N/A	1	1	1	N/A
Q	321-M. Machine casting.	N/A	N/A	4	N/A	N/A
R	321-M. Service groups.	N/A	N/A	2	N/A	N/A
S	321-M. All assigned personnel.	N/A	N/A	1	N/A	N/A
Т	100 Areas, 105 Buildings . Reactor department personnel from C&D crews, purification, and pump room observation; control room and monitor operators; all 100-Area HP, Maintenance, and T&T personnel; all E&I, laboratory, and HP personnel assigned to 105 buildings; T&T personnel in central shops; reactor tech personnel as designated by	(c)	(c)	(c)	(c)	(c)
	supervision.					
U	773-A. Radiation control and maintenance.	1	1	N/A	1	N/A
V	773-A. Area Maintenance Mechanics.	1	1	1	1	N/A
W	773-A. Special group.	(d)	(d)	(d)	(d)	(d)
Χ	700 Area. Shop personnel provide samples as considered advisable by 3/700-Area survey.	(e)	(e)	(e)	(e)	(e)

- a. N/A = not applicable; C&D = Construction and Demolition; T&T = Transportation and Traffic.
- b. NP was performed when requested by area HP. Neptunium has never been detected without at least an equal amount of plutonium.
- c. Except A-Line where operators were sampled weekly.
- d. Except casting area where operators were sampled monthly.
- e. Samples also analyzed for IA.

Document No. ORAUT-TKBS-0003-7 Effective Date: 03/05/2024 Page 152 of 297

ATTACHMENT B BIOASSAY DATA TYPES AND FREQUENCIES (continued)

Table B-4. Early 1971 bioassay frequencies (samples or counts per year by analysis type) [DuPont 1971a]. a,b

Category		H3 samples	Pu samples	FP samples	EU samples	U samples	Am/Cm/Cf samples	EU counts	Pu/Am/Cm/Cf counts
Α	Minimum potential (except HTO). Personnel assigned to 284-F & -H, 704-F & -H, 706-F & -H, 717-F, and nonprocess sections of other facilities; patrolmen.	N/A	1 ea. 3 yr	N/A	N/A	N/A	N/A	N/A	N/A
В	221-F & -H fourth level. Separations supervision; all separations technology personnel, control room operators, janitors, and clerical personnel.	N/A	1	1	N/A	N/A	N/A	N/A	N/A
С	221-H and H-Area outside facilities. All operators (except control room and sample aisle), HP personnel, and selected power, E&I and Maintenance personnel assigned to 221-H process areas; all personnel assigned to H-Area outside facilities.	2	1	2	1	N/A	N/A	N/A	N/A
D	221-H sample aisle and 772-F. All sample aisle operators; selected 772-F laboratory personnel.	N/A	2	2	2	N/A	1	N/A	1
Е	221-H B-Line, 221-F B-Line, JB-Line & 235-F. All personnel assigned to process sections in building 235-F; and all assigned personnel in other facilities.	N/A	2	2	N/A	N/A	N/A	N/A	1
F	221-F, 723-F, and 643-G. All operators (except control room and sample aisle), HP personnel, and selected power, E&I and Maintenance personnel assigned to 221-F process areas; all personnel assigned to 723-F and 643-G.	N/A	1	2	N/A	N/A	N/A	N/A	N/A
G	221-F sample aisle. All 221-F sample aisle operators.	N/A	2	2	N/A	N/A	2	N/A	1 ^c
Н	F-Area outside facilities. All assigned personnel.	N/A	1 ea. 3 yr	2	N/A	4 ^d	N/A	N/A	N/A
J	772-F (excluding UO ₃ section). All assigned personnel.	N/A	2	2	1	1	N/A	N/A	N/A
K	313-M. All assigned personnel.	N/A	N/A	N/A	N/A	4	N/A	N/A	N/A
L	322-M. All assigned personnel. 320-M. All laboratory and selected radioactive material personnel. 773-A. Reactor engineering group and 777-M assigned personnel.	N/A	1 ea. 3 yr	N/A	1	4	N/A	N/A	N/A
M	322-M. Personnel processing samples from field. 772-F, UO₃ section. All assigned personnel.	N/A	1 ea. 3 yr	1	1	4	N/A	N/A	N/A
N	321-M. All assigned personnel.	N/A	1	N/A	4 ^e	N/A	N/A	2 ^f	N/A
Т	100 Areas, 105 Buildings. Reactor department personnel from C&D crews, purification, and pump room observation; control room and monitor operators; all 100-Area HP, Maintenance, and T&T personnel; all E&I personnel assigned to 105 buildings; T&T personnel in central shops; and selected reactor tech and 400-Area personnel.	(g)	N/A	1 ^h	N/A	N/A	N/A	N/A	N/A
V	773-A. Analytical chemistry, high level caves, building services, radiation control, and Maintenance personnel.	N/A	1 ea. 3 yr	1	N/A	N/A	2	N/A	1

		Н3	Pu	FP	EU	U	Am/Cm/Cf	EU	Pu/Am/Cm/Cf
Category	Description	samples	samples	samples	samples	samples	samples	counts	counts
W	773-A. Selected clerical and supervisory personnel	N/A	1 ea. 3 yr	N/A	N/A	N/A	1	N/A	N/A
Х	232-H, 234-H, 237-H, & 238-H. All assigned personnel.	(g)	1 ea. 3 yr	N/A	N/A	N/A	N/A	N/A	N/A
	241-H & 244-H. Selected personnel.	,	_						
N/A	700 Area shop personnel provide samples as considered	(i)	(i)	(i)	(i)	(i)	(i)	(i)	(i)
	advisable by HP.						-		•

- N/A = not applicable; C&D = Construction and Demolition; T&T = Transportation and Traffic.
- b. NP was performed when requested by area HP. Neptunium has never been detected without at least an equal amount of plutonium.
- Selected personnel.
- d. Except A-Line where operators were sampled weekly.
- Except casting area where operators were sampled monthly. e.
- Only personnel assigned to casting areas.
- Samples also analyzed for IA. g.
- Sample frequency established by local procedures. h.
- 700 Area shop personnel provided samples as considered advisable by HP.

Document No. ORAUT-TKBS-0003-7

ATTACHMENT B BIOASSAY DATA TYPES AND FREQUENCIES (continued)

Table B-5. Late 1971 bioassay frequencies (samples per year or counts per year by analysis type) [DuPont 1971b]. a,b

		Н3	Pu	FΡ	EU	Ú	Am/Cm/Cf	EU	Pu/Am/Cm/Cf
Category	Description	samples	samples	samples	samples	samples	samples	counts	counts
A	Minimum potential (except HTO). Personnel assigned to 284-F & -H, 704-F & -H, 706-F & -H, 717-F, and nonprocess sections of other facilities; patrolmen.	N/A	1 ea. 3 yr	N/A	N/A	N/A	N/A	N/A	N/A
В	221-F & -H fourth level. Separations supervision; all separations technology personnel, control room operators, janitors, and clerical personnel.	N/A	1	1	N/A	N/A	N/A	N/A	N/A
С	221-H and H-Area outside facilities. All operators (except control room and sample aisle), HP personnel, and selected power, E&I and Maintenance personnel assigned to 221-H process areas; all personnel assigned to H-Area outside facilities.	2	1	2	1	N/A	N/A	N/A	N/A
D	221-H sample aisle . All 221-H sample aisle operators; selected 772-F laboratory personnel.	N/A	2	2	2	N/A	N/A	N/A	1
E	221-F sample aisle. All 221-F sample aisle operators; selected 772-F personnel.	N/A	2	2	N/A	N/A	2	N/A	N/A
F	221-F, 723-F, and 643-G. All operators (except control room and sample aisle), HP personnel, and selected power, E&I and Maintenance personnel assigned to 221-F process areas; all personnel assigned to 723-F and 643-G.	N/A	1	2	N/A	N/A	N/A	N/A	N/A
G	221-H B-Line, 221-F B-Line, JB-Line, 235-Fe. All personnel assigned to process sections in building 235-F, and all assigned personnel in other facilities.	N/A	2	2	N/A	N/A	N/A	N/A	1
Н	F-Area outside facilities. All assigned personnel.	N/A	1 ea. 3 yr	2	N/A	4 ^c	N/A	N/A	N/A
J	772-F (excluding UO ₃ section). All assigned personnel.	N/A	2	2	1	1	N/A	N/A	1 ^d
K	313-M. All assigned personnel.	N/A	N/A	N/A	N/A	4	N/A	N/A	N/A
L	322-M. All assigned personnel, including personnel processing samples from field. 320-M. All laboratory and selected RADIOACTIVE MATERIAL personnel. 773-A. Reactor engineering group and 777-M assigned personnel.	N/A	1 ea. 3 yr	N/A	1	4	N/A	N/A	N/A
М	322-M. Personnel processing samples from field. 772-F, UO₃ Section. All assigned personnel.	N/A	1 ea. 3 yr	1	1	4	N/A	N/A	N/A
N	321-M. All assigned personnel.	N/A	1	N/A	4 ^e	N/A	N/A	2 ^f	N/A
Т	100 Areas, 105 Buildings. Reactor department personnel from C&D crews, purification, and pump room observation; control room and monitor operators; all 100-Area HP, Maintenance, and T&T personnel; all E&I personnel assigned to 105 buildings; T&T personnel in central shops; and selected reactor tech and 400-Area personnel.	(g)	N/A	1 ^h	N/A	N/A	N/A	N/A	N/A

Category	Description	H3 samples	Pu samples	FP samples	EU samples	U samples	Am/Cm/Cf samples	EU counts	Pu/Am/Cm/Cf counts
V	773-A. Analytical chemistry, high level caves, building services, radiation control, and Maintenance personnel.	N/A	1 ea. 3 yr	1	N/A	N/A	2	N/A	1 ^d
W	773-A. Selected clerical, supervisory personnel, and selected 100-Area personnel.	N/A	1 ea. 3 yr	N/A	N/A	N/A	1	N/A	N/A
Х	232-H, 234-H, 237-H, & 238-H. All assigned personnel. 241-H & 244-H. Selected personnel.	(g)	1 ea. 3 yr	N/A	N/A	N/A	N/A	N/A	N/A
N/A	700 Area. Shop personnel provide samples as considered advisable by HP.	(i)	(i)	(i)	(i)	(i)	(i)	(i)	(i)

- N/A = not applicable; C&D = Construction and Demolition; T&T = Transportation and Traffic.
- b. NP was performed when requested by area HP. Neptunium has never been detected without at least an equal amount of plutonium.
- c. Except A-Line where operators were sampled weekly.
- d. Selected personnel.
- Except casting area where operators were sampled monthly.
- Only personnel assigned to casting areas.
- g. Sample frequency established by local procedures.
- h. Samples also analyzed for IA.
- i. 700 Area shop personnel provided samples as considered advisable by HP.

Document No. ORAUT-TKBS-0003-7 Revision No. 00 Effective Date: 03/05/2024 Page 156 of 297

ATTACHMENT B BIOASSAY DATA TYPES AND FREQUENCIES (continued)

Table B-6. 1976 bioassay frequencies (samples per year or counts per year by analysis type) [DuPont 1976].^a

	Pu	EU	U	IA/FP	Am/Cm/Cf	Sr	Н3	FP	Days	Shift
Personnel work assignment	samples	samples	samples	samples	samples	samples	samples	samples	counts	counts
Minimum Potential. Personnel working in tritium	1 ea. 3 yr	N/A	N/A	N/A	N/A	N/A	(b)	N/A	1 ea.	1 ea.
facilities, 200-FH facilities not mentioned below, 723-A									3 yr ^c	3 yr
(EED), and 305-M. Selected 100-Area and 773-A										
personnel.										
221-FH. All operators, Separations Technology, HP,	1	(d)	(e)	N/A	(f)	(g)	N/A	N/A	1	2
and 4th-Level personnel; E&I, Maintenance, Clerical,										
and Service Department personnel assigned to process										
areas.										
241-FH, 211-FH, 723-F, A-Line, 643-G & 244-H. All										
assigned personnel.										
772-F & 235-F. Personnel assigned to nonprocess										
areas.										
Patrol & T&T. All personnel assigned to 200-FH Areas.										
773-A. Selected clerical and supervisory personnel.										
100-Areas. Selected personnel.										
221-HB Line, 221-FB Line, JB-Line. All assigned	4	(d)	N/A	N/A	(f)	N/A	N/A	(c)	1 ^h	2
personnel.										
235-F. Personnel assigned to process areas.										
772-F. Personnel assigned to process areas.										
773-A. Selected ACD, SED, SCD, NMD, HLC,										
Radiation Control, Building Services, and Maintenance										
personnel.										
313-M. All assigned personnel.	N/A	N/A	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A
322-M & 772-F (UO₃ Section). All assigned personnel.	1 ea. 3 yr	1	4	N/A	N/A	N/A	N/A	N/A	(i)	(i)
320-M. All laboratory and selected radioactive material										
personnel.										
773-A. Reactor Engineering and 777-M personnel.										
321-M. All assigned personnel except those in Casting	1	4	N/A	N/A	N/A	N/A	N/A	N/A	1 ea.	1
Area.									3 yr	

	Pu	EU	U	IA/FP	Am/Cm/Cf	Sr	H3	FP	Days	Shift
Personnel work assignment	samples	samples	samples	samples	samples	samples	samples	samples	counts	counts
Reactor Department personnel from CH purification	1 ^c	N/A	N/A	N/A	N/A	N/A	(b)	N/A	1 ^j	1 ^j
and pump room observation; control room and monitor							, ,			
operators; all 100-Area HP, Maintenance, and T&T										
personnel; E&I and service personnel assigned to 105										
buildings; T&T personnel in central shops and 618-G;										
selected reactor tech, project and 400-Area personnel.										
321-M. All personnel assigned to Casting Area.	1	12	N/A	N/A	N/A	N/A	N/A	N/A	2	2

- ACD = Analytical Chemistry Division; HLC = high-level cave; N/A = not applicable; NMD = Nuclear Materials Division; SED = Separation Engineering Division; SCD = Separation Chemistry Division; T&T = Transportation and Traffic.
- Sample frequency established in local procedures.
- Selected personnel.
- Selected personnel in 221-H, 211-H, and 772-F sampled for EU four times a year.
- A-Line assigned personnel in F-Area sampled weekly; samples collected after day(s) of rest and before exposure.
- Selected personnel in 221-F, 211-F, and 773-A sampled for Am-Cm once a year.
- Selected personnel assigned to waste management work sampled for Sr once a year.
- All B-Line and JB-Line personnel and 772-F laboratory attendants counted twice a year.
- 322-M personnel processing 200-Area samples and 772-F (UO₃ Section) personnel counted once a year.
- Selected day and all shift personnel; urine sample not required if in vivo count scheduled.

Table B-7. 1985 bioassay frequencies (samples per year or counts per year by analysis type) [DuPont 1985b]. a,b

Table B 7: 1000 bloadedy frequencies (damples per year or count								
	Pu	EU	NU	FP/IA	Am/Cm/Cf		Sr	In vivo
Personnel work assignment	samples	samples		samples	samples	samples	samples	countsc
100-400 Areas. Selected day personnel and all shift Reactor Department	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1
CH, purification, pump observation room, and monitor operators.								
100-400 Areas. Reactor control room operators, HP, Maintenance, T&T, E&I,	1 ea. 3 yr	N/A	N/A	1	N/A	N/A	N/A	N/A
and service personnel assigned to 105 Building, T&T personnel in Central								
Shops and 618-G; selected Reactor Tech, Project, and selected 400-Area								
personnel.								
100-400 Areas. Maximum potential. Selected personnel.	1	N/A	N/A	N/A	N/A	N/A	N/A	1
100-400 Areas. Other personnel assigned to 105 Building. Selected 400	N/A	N/A	N/A	1	N/A	N/A	N/A	N/A
Area personnel.								
200 Area. Personnel working in tritium facilities or 200-FH facilities not	1 ea. 3 yr	N/A	N/A	N/A	N/A	N/A	N/A	1
mentioned below.								
211-FH, 723-F, 643-G, A-Line, 241-FN, 244-H. All Separations operators;	1	N/A	N/A	N/A	N/A	N/A	N/A	1
Sep. Tech, HP, and other 4th level personnel; E&I, Maintenance, clerical,								
and service department personnel assigned to process areas.								
235-F, 772-F. Selected personnel.	1	N/A	N/A	N/A	N/A	N/A	N/A	1
221-F. Selected personnel.	1	N/A	N/A	N/A	1	N/A	N/A	1
221-H. Selected personnel.	1	4	N/A	N/A	N/A	N/A	N/A	1
643-G. Selected personnel assigned to waste management work.	1	N/A	N/A	N/A	N/A	N/A	1	1
221-FB-Line, JB-Line. All assigned personnel.	2	N/A	N/A	N/A	N/A	N/A	N/A	1
235-F. Personnel assigned to process areas.	2	N/A	N/A	N/A	N/A	1	N/A	1
772-F. Personnel assigned to laboratories in the PUREX and Pu sections.	2	1	N/A	N/A	N/A	N/A	N/A	1
221-F. Selected personnel.	2	N/A	N/A	N/A	2	N/A	N/A	1
221-H, 772-F. Selected personnel.	2	4	N/A	N/A	N/A	N/A	N/A	1
221-HB-Line. All assigned personnel.	4	N/A	N/A	N/A	N/A	N/A	N/A	2
300 Areas, 313-M. All assigned personnel.	N/A	N/A	4	N/A	N/A	N/A	N/A	1
322-M. UO ₃ Sections and other selected personnel.	1	1	4	N/A	N/A	N/A	N/A	1
322-M . All other assigned personnel.	1 ea. 3 yr	1	4	N/A	N/A	N/A	N/A	1
320-M . All laboratory and selected radioactive material personnel.	N/A	1	4	N/A	N/A	N/A	N/A	1
321-M . All personnel assigned to charge prep, casting, and machining areas.	1	12	N/A	N/A	N/A	N/A	N/A	2
321-M. All other assigned personnel.	1	4	N/A	N/A	N/A	N/A	N/A	1
773-A. Minimum potential.	1 ea. 3 yr	N/A	N/A	N/A	N/A	N/A	N/A	1
773-A. Selected ACD, SED, SCD, NMD, HLC, Radiation Control, Building	2	N/A	N/A	N/A	N/A	N/A	N/A	1
Services, and Maintenance personnel.								
773-A. Reactor Engineering and 777-M personnel.	1 ea. 3 yr	1	4	N/A	N/A	N/A	N/A	1
773-A. Selected clerical and supervisory personnel.	1	N/A	N/A	N/A	N/A	N/A	N/A	1
773-A. Maximum potential. Selected personnel.	2	2	4	N/A	2	N/A	N/A	1

a. N/A = not applicable; T&T = Transportation and Traffic.

b. This 1985 procedure indicates it is a duplicate of a 1978 procedure, so these frequencies apply for at least the 1978 to 1985 period.

c. The count frequency for shift employees was twice a year unless they only receive triennial plutonium urine bioassay.

Table B-8. 1989 bioassay frequencies (samples per year or counts per year by analysis type)^a [DuPont no date a].

	Pu	EU	NU	Am/Cm/ Cf	Np	Sr	In vivo
Personnel work assignment	samples	samples	samples	samples	samples	samples	counts
100-400 Areas, All reactor area departments and construction. Selected day	1 ea. 3 yr	N/A	N/A	N/A	N/A	N/A	N/A
personnel and all shift Reactor Department CH, purification, pump observation							
room, and monitor operators. Maintenance, T&T, E&I, and service personnel							
assigned to 105 building, T&T personnel in Central Shops and 618-G; selected							
Reactor Tech, Project, and selected 400-Area personnel.							
100-400 Areas, All reactor area departments and construction. HP, selected CH.	1	N/A	N/A	N/A	N/A	N/A	1
211-H. Selected personnel.	1	4	N/A	N/A	N/A	N/A	1
643-G . Selected personnel assigned to waste management work.	N/A	4	N/A	N/A	N/A	1	1
FB-Line. Operators and first line supervisors. SWE Mechanics.	4	N/A	N/A	N/A	N/A	N/A	1
FB-Line. Other assigned personnel.	N/A	4	N/A	N/A	N/A	N/A	1
HB-Line. Operators.	4	N/A	N/A	N/A	1	N/A	1
HB-Line. Other assigned personnel.	1	N/A	N/A	N/A	1	N/A	1
235-F. Operators.	4	N/A	N/A	N/A	1	N/A	1
235-F. Other assigned personnel.	1	N/A	N/A	N/A	1	N/A	1
A-Line (F). All assigned personnel.	1	N/A	12	N/A	N/A	N/A	1
772-F. Personnel assigned to laboratories in the PUREX and Pu sections.	2	1	N/A	N/A	N/A	N/A	1
221-F. Selected personnel.	1	N/A	N/A	N/A	N/A	N/A	1
221-H. Selected personnel.	2	4	N/A	N/A	N/A	N/A	1
313-M. All assigned personnel.	N/A	N/A	4	N/A	N/A	N/A	N/A
322-M. All assigned personnel.	1	4	4	N/A	N/A	N/A	1
320-M . All laboratory and selected radioactive material personnel.	N/A	4	4	N/A	N/A	N/A	1
321-M . All personnel assigned to charge prep, casting, and machining, and	1	12	N/A	N/A	N/A	N/A	1
assembly weld areas.							
773-A. Minimum potential.	1 ea. 3 yr	N/A	N/A	N/A	N/A	N/A	N/A
773-A. Selected ACD, SED, SCD, NMD, HLC, Radiation Control, Building	2	N/A	N/A	1	N/A	N/A	1
Services, and Maintenance personnel.	4 0	4	4	N1/A	NI/A	N1/A	NI/A
773-A. Reactor Engineering and 777-M personnel.	1 ea. 3 yr	1	4	N/A	N/A	N/A	N/A
773-A. Selected clerical and supervisory personnel.	1	N/A	N/A	N/A	N/A	N/A	1
773-A. Maximum potential. Selected personnel.	2	2	4	2	N/A	N/A	7
221-S. All assigned personnel.	1	N/A	N/A	N/A	N/A	1	7
250-S. All assigned personnel.	1	N/A	N/A	N/A	N/A	1	1
210-Z. All assigned personnel.	1	N/A	N/A	N/A	N/A	1	1
247-F. Personnel who perform work in process core.	N/A	12	N/A	N/A	N/A	N/A	1
247-F . Personnel who do not perform work in process core.	N/A	4	N/A	N/A	N/A	N/A	1

a. N/A = not applicable; T&T = Transportation and Traffic; E&I = Electrical and Instrumentation.

ATTACHMENT C EVALUATION OF HIGH-VARIABILITY AMERICIUM DATA

LIST OF TABLES

<u>TABI</u>	<u>TITLE</u>	<u>PAGE</u>
C-1	Summary of bottle dates for 51 of 60 reviewed results	163
	LIST OF FIGURES	
<u>FIGU</u>	RE TITLE	PAGE
C-1 C-2	CV versus absolute mean value for disc results	
C-3	·	162

ATTACHMENT C EVALUATION OF HIGH-VARIABILITY AMERICIUM DATA (continued)

There have been several documents written about the variability of the SRS americium logbook data [SC&A 2014, 2019, 2020; ORAUT 2019; NIOSH 2019, 2020b]. Because the americium logbook data were reentered, the variability should be reassessed. NIOSH and SC&A have used the coefficient of variation (CV), also known as the relative standard deviation, as a metric to assess variability [ORAUT 2019; SC&A 2019; NIOSH 2020b]. The CV is the standard deviation divided by the absolute value of the mean and can be calculated for any result with multiple measurements.

Americium Data Details

This analysis focuses on the within-sample variability, which is the variability between measurements taken on the same disc. Only rows where the following conditions are met are considered:

- Not LIP (lost in process), and
- More than one non-blank disc result.

Of the 19,081 rows in the americium logbook dataset, 5,573 satisfy the two criteria listed above. For each of those rows, the mean (average of all nonblank disc results) and CV were calculated.

Variability Assessment

Variability can be assessed by looking at a plot of CV versus the absolute value of the mean. Figure C-1 is the full-scale plot, Figure C-2 is a zoomed version, and Figure C-3 is the full-scale plot on a log-log scale. Naturally, as the mean increases the CV decreases. The vast majority of the points behave as expected based on the formulation of the CV. The line [0.25 + 1/abs(mean)] was chosen to determine which disc results warranted closer inspection. As mentioned in NIOSH [2020b], there is no known criterion to deem any set of disc results as excessively variable. This line is not intended to try to do that; it is included to identify results for review, which are those that that fall outside (above or to the right and indicated by the red points) of the coefficient of variation inspection line.

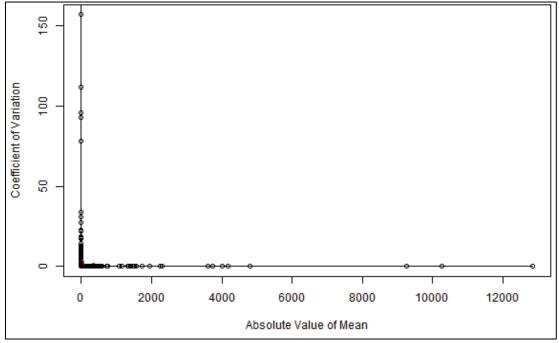


Figure C-1. CV versus absolute mean value for disc results.

ATTACHMENT C EVALUATION OF HIGH-VARIABILITY AMERICIUM DATA (continued)

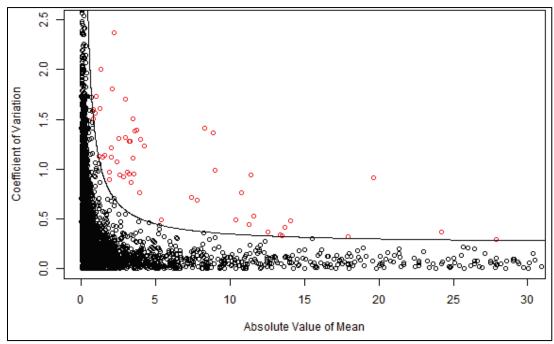


Figure C-2. CV versus absolute mean value for disc results, zoomed scale. Note that there are 6 points above the line that are not shown on this plot, with absolute value of the mean ranging from 58 to 328.

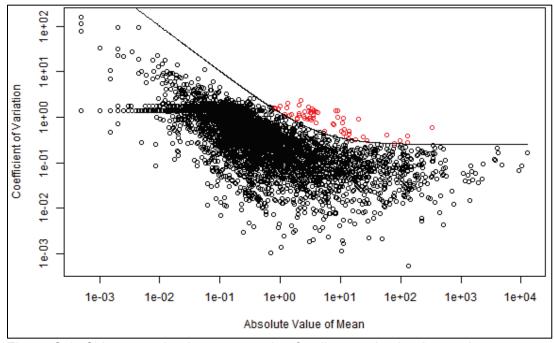


Figure C-3. CV versus absolute mean value for disc results, log-log scale.

Review of Disc Results

Using the line in the plots, there are 60 reviewed observations (out of 5,573, which is just over 1%) that are above and to the right of the line. While no single cause for the observed variability in these

ATTACHMENT C EVALUATION OF HIGH-VARIABILITY AMERICIUM DATA (continued)

results could be identified, there were a few notable patterns. Of the 60 results that were reviewed, 51 had bottle dates in four fairly short periods.

Table C-1. Summary of bottle dates for 51 of 60 reviewed results.

Period	Number of reviewed results
08/20/1969-11/21/1969	6
02/09/1970-05/28/1970	11
01/19/1972-03/29/1972	9
05/17/1986-08/15/1986	25

The 25 results in the 05/17/1986–08/15/1986 period are from [redacted] workers, [redacted] of whom had 15 results with large reported plutonium results for the same samples. Problems with the alpha counter were noted with 5 results, and for 10 of the results it appears that a relatively high result from one count was not included in the final reported result.

In general, nothing about the 60 results that were reviewed indicated any systematic issue with the analytical procedure used for americium.

Conclusion

The second major conclusion from NIOSH's previous white paper [NIOSH 2020b, p. 8] states:

In general, the original bioassay results of record at a site that were used to demonstrate compliance with the DOE regulations in place at the time of the analyses are considered to be the best available data to use for dose reconstruction and generation of co-exposure models. Limited review of that data is performed as a confirmatory measure.

This analysis of variability serves as part of the limited review to be used as a confirmatory measure of fitness for use in co-exposure modeling. Nothing in this analysis suggests there is an issue with the within-sample variability of the SRS americium logbook data.

TABLE OF CONTENTS

SECT	<u>ION</u> <u>TITLE</u>	PAGE
D.1	Source Data and Data Preparation Instructions	165
D.2	Master Occupation Table Instructions	167
D.3	CTW Designation Instructions	171
D.4	Radionuclide Instructions D.4.1 All Nuclides D.4.2 Mixed Fission Products (MFPBeta/Strontium) D.4.3 Plutonium D.4.4 Uranium D.4.5 Cesium-137 D.4.6 Cobalt-60 (Mixed Fission Products Gamma) D.4.7 Neptunium D.4.8 Tritium D.4.9 Americium	
<u>TABL</u>	<u>E</u> <u>TITLE</u>	<u>PAGE</u>
D-1 D-2 D-3	CTW Master Table cross-reference CTW occupation titles nonCTW occupation titles	169

D.1 SOURCE DATA AND DATA PREPARATION INSTRUCTIONS

SOURCE DATA

All files in this section are in ORAUT [2022] in the \source data\ subfolder. Text in bold are the designations used to refer to the files throughout the instructions.

Bioassay Data:

- **NOCTS In-vitro Data:** SRS combined in-vitro data 051717.xlsx,
- NOCTS H3 data: SRS NOCTS Tritium_052710_postQA.mdb, using the QC copy of SRS NOCTS Tritium 052710 table,
- Np data: Compiled SRS Np Logbook WHC 07202011r0 Mike.xlsx,
- **Np data2:** Np data new data entry 2013-09-10 review 10616.xlsx,
- WBC data: SRS combined in-vivo data 083117.xlsx,
- MFPG WHC data: Reviewed MFP&G data for Board 032916.xlsx,
- Am data: REVIEWED Am Final Compiled SRS WHC 06302011r2Ready Updated rev4 062416.xlsx, and
- Rev 6 Am data: SRS Am Review Details All with Emp 2021-08-31.csv.

Bioassay Correction Files:

- **NOCTS H3 corrections:** Tritium data corrections 2016-07-12.xlsx.
- **Np corrections:** Np logbook data corrections 2016-10-03.xlsx,
- **NOCTS In-vitro corrections 1:** In-vitro stat corrections 2017-08-02.xlsx,
- **NOCTS In-vitro corrections 2:** In-vitro stat corrections 2018-11-15.xlsx,
- **NOCTS In-vivo corrections:** In-vivo stat corrections 2017-11-09.xlsx,
- **WBC corrections:** WBC data corrections 2016-09-15.xlsx.
- Am corrections: Am logbook data corrections 2016-08-01.xlsx, and
- **MFPG corrections:** MFP&G data corrections 2016-06-22.xlsx.

Occupation Tables:

- CTW Master Update Part 1: Compiled CTW Master Update Part 1 with names 071516.xlsx,
- CTW Master Update Part 2: MOT Update Part 2 completed rereviewed 090616.xlsx,
- CTW Master Update Part 2 corrections: MOT Update Part 2 corrections.xlsx,

- CTW Master Update Part 3: Np data 2 nulls.xlsx,
- CTW Master Update Part 4: COMPILED SRS MOT 032717 MM updated rev1.xlsx,
- **MOT Corrections 1:** MOT corrections 2018-03-06.xlsx,
- **MOT Corrections 2:** MOT corrections 2018-08-23.xlsx.
- **MOT Corrections 3:** MOT corrections 2018-09-17.xlsx,
- **MOT Corrections 4:** MOT corrections 2018-09-24.xlsx, and
- MOT Corrections 5: MOT corrections 2018-10-02.xlsx.

Other Files:

- Chelation Data: SRS Chelation Data Payroll ID's added 082514.xlsx,
- Chelation Data for Am: SRS Chelation Data Payroll ID's update 23Aug2021 jmm.xlsx,
- SRS NOCTS Names: NioshClaims With Names.csv,
- SRS NOCTS SSNs: SRS SSNs.csv, and
- In-vitro nuclide list.xlsx.

Corrections and CTW Designations

The files listed above are combined to create files to be used for the individual nuclide co-exposure studies. Once corrections and CTW updates have been made, rename the files.

Renamed files, to be used with the individual nuclide sections below, are as follows and are available in ORAUT [2022] in the \Files Ready for Cleanup and Stat Analysis\ subfolder:

- WBC data updated: SRS combined in-vivo data subset 092518 with CTW,
- NOCTS In-vitro Data updated: SRS combined in-vitro data 091818 with CTW,
- Np data updated: SRS Np 1 Logbook In Vitro Data 100218 with CTW, and
- Np data updated2: SRS Np 2 Logbook In Vitro Data 100218 with CTW.

Data Corrections

For each applicable data source, make corrections as listed in the associated corrections file.

- Replace individual cell contents based on cell contents in the corrections file.
- If a cell in the corrections file contains "blank," then delete that cell's contents in the source data file.

- If the corrections file comments column contains the word "exclude" or "remove" then do not use that line for the statistical analysis.
- Rows are identified by the Unique ID column except as otherwise noted.
 - 1. Correct the **Np data** with the **Np corrections** file.
 - 2. Correct the **WBC data** with the **WBC corrections** (identify lines by the "Unique # for Rick" column) and the **NOCTS In-vivo corrections** files.
 - 3. Correct the **Am data** with the **Am corrections** file.
 - 4. Correct the MFPG data with the MFPG corrections file.
 - 5. Correct the NOCTS In-vitro data with the NOCTS In-vitro corrections 1 and 2 files.
 - 6. Correct the **NOCTS H3 data** with the **NOCTS H3 corrections** file.
 - 7. Correct the CTW Master Update Part 2 file with the CTW Master Update Part 2 Corrections file.

D.2 MASTER OCCUPATION TABLE INSTRUCTIONS

- 1. Merge the following files into one master occupation table (CTW Master).
 - a. Np data,
 - b. WBC data,
 - c. MFPG WHC data,
 - d. Am data, and
 - e. CTW Master Update Part 1, 2, 3, and 4.

Table D-1 lists the mapping of column identifiers from each of the source files to the CTW Master table. If a cell in a listed column of the source file is blank (blank or no characters other than space) and there is a second column identified in parentheses, use the value from the cell in that column instead. For the first and middle name initials, import only the first character of the name from the source files that provide the full first and middle name.²

For the purposes of this evaluation, no distinction is made regarding CTW employer, whether prime contractor or subcontractor.

Table D-1. CTW Master Table cross-reference.^a

Master	Np data	WBC data	MFPG WHC data	Am data	CTW Master Update 1 and 2	CTW Master Update 3	CTW Master Update 4
PRID	Corrected PRID (Payroll ID#)	Corrected PR # (PR)	Corrected PR # (PR)	Changed Payroll ID# (Payroll ID#)	PRID	PRID	C PRID (PRID)
Last Name	Corrected Last Name (Employee Last Name)	Corrected last name (Last name)	Last name	Corrected Last Name (Employee Last Name)	Last Name	Last Name	Last.name
First Initial	Corrected FI (Employee First Initial)	First name	First Name	Corrected First Initial (Employee First Initial)	First Initial	First Initial	First.name
Middle Initial	Corrected MI (Employee Middle Initial)	Corrected middle name (Middle Name)	Middle Name	Corrected Middle Initial (Employee Middle Initial)	Middle Initial	Middle Initial	Middle.name
SSN	N/A	N/A	N/A	N/A	SSN	N/A	N/A
Occupation Title	Corrected Occupation Title (Occupation Title)	Corrected Occupation (Occupation Title)	Corrected Occupation Title (Occupation Title)	Changed Occupation Title (Occupation Title)	Corrected Occupation Title (Occupation Title)	Rev4Occ	C Job Title (Job Title)
Date	Bottle Date (Received Date)	Date	Date	Bottle Date	Date	Bottle Date	Date
NIOSH ID	N/A	Claim	Claim #	NIOSH ID	NIOSH ID	N/A	Claim
SRDB Ref ID	SRDB Ref ID	N/A	N/A	SRDB Ref ID	SRDB Ref ID	N/A	N/A
CTW	N/A	N/A	N/A	N/A	CTW	N/A	N/A
WkHxFile	Link to EDAR & WkHx Images	Link to EDAR & WkHx Images	Link to EDAR & WkHx Images	Link to EDAR & WkHx Images	EDAR.file	OccFile	C Job Hist Source (WkHxFileName)
WkHxPage	Page ^b	Page ^c	Page ^d	Page ^e	Page ^f	OccPage	WkHxFilePage ^g

- a. SSN = Social Security Number; N/A = not applicable.
- b. Page in column 18.
- c. Page in column 14.
- d. Page in column 23.
- e. Page in column 19.
- f. Page in column 15.
- g. Only if the WkHxFile source is the WkHxFileName column, otherwise leave blank.

- 2. Remove duplicate lines.
- 3. Remove lines where the occupation is blank.
- 4. Use the first/middle/last name information (corrected and original) to assign NIOSH ID numbers to CTW Master Table rows without a NIOSH ID number where possible. Do not overwrite claim numbers found in the original files.
- 5. For each row with a NIOSH ID number and no SSN, look up the SSN in the SRS NOCTS SSNs file and add to the CTW Master Table where possible.
- 6. MOT corrections:
 - a. Change PRID [redacted] to [redacted].
 - b. For PRID [redacted], change occupation to [redacted].
 - c. Change PRID [redacted] to [redacted].
 - d. Change PRID "[redacted]" to [redacted].
 - e. Make the changes identified in the MOT CORRECTIONS 1 through 5 files.
- 7. For all rows where the PRID prefix = "3-", set CTW = Null.
- 8. For all rows where ([PRID prefix is 4 or ≥ "6" except "30"] or any title listed in Table D-2) and excluding any title in Table D-3:
 - a. Set CTW = 'Y'.
 - b. Otherwise, set CTW = 'N'.

Table D-2. CTW occupation titles.^a

Occupation title	Occupation title
*maintenance man	laborer
boilermaker	maintenance
carpenter	maintenance mechanic
concrete	maintenance mechanic a
concrete worker	mechanic
construction	millwright
construction worker	painter
crane operator	pipe fitter
ctw	pipefitter
driver	plumber
e&i tech	rigger
electrician	roll 5
heavy equipment operator	sheetmetal
insulator	sheetmetal worker
iron worker	Welder

a. Ignore capitalization differences.

Table D-3, nonCTW occupation titles.^a

Occupation title	Occupation title
Administrative Assistant	Laundry
Administrator	Layout
Assistant	Machinist
Cafeteria	Manager
CATI - Machinist	Material Control
Clerical	Operator
Crane Process Operator	Pilot
Designer	QA
Engineer	Radiographer
Escort	Reactor Operator
Foreman	Security
Geologist	Specialist
HP	Supervisor
Human Resources	Technician
Instructor	

a. Ignore capitalization differences.

- 9. If the PRID is a SSN, ignore the PRID field for CTW determination.
- 10. Overwrite CTW results as follows:
 - a. Claim [redacted], for all dates, CTW = "N",
 - b. Claim [redacted], for all dates, CTW = "N",
 - c. Claim [redacted], CTW = "Y" before 02/01/1984, "N" on 02/01/1984 and after,
 - d. PRID [redacted], for all dates, CTW = "Y",
 - e. PRID [redacted], CTW = "Y" on 11/19/1974,
 - f. PRID [redacted], CTW = "Y" on 07/13/1982,
 - g. PRID [redacted], CTW = "Y" on 02/09/1983,
 - h. Claim [redacted], PRID [redacted] or [redacted], nonCTW after 05/27/1973,
 - Claim [redacted], PRID [redacted] or [redacted], nonCTW after 06/04/1972,
 - Claim [redacted], PRID [redacted] or [redacted], nonCTW after 06/02/1968,
 - k. Claim [redacted], PRID [redacted] or [redacted], nonCTW after 05/06/1973,
 - Claim [redacted], PRID [redacted], for all dates, nonCTW,
 - m. Claim [redacted], PRID, nonCTW after 04/15/1973, and
 - n. Claim [redacted], PRID [redacted], nonCTW after 11/02/1975.

D.3 CTW DESIGNATION INSTRUCTIONS

- 1. For each radionuclide data set used for the co-exposure study, create a new column of data labeled "Rev4CTW."
- 2. For each line of data in the data set, look up the CTW designation in the **CTW Master** file for that person and date.³
 - a. Match the person based on the following fields given in preference order:
 - i. NIOSH ID,
 - ii. PRID, and
 - iii. Last name and First/Middle initial.
 - b. Find the CTW designation date for that person in the following priority order:
 - i. Same date,
 - ii. Most closely preceding date, and
 - iii. Most closely following date (within 5 years).
 - c. Use the CTW designation on above date to update the data set. (Note: There should be exact date matches for all dates in the Am, Np, and WBC data files.)
 - d. If the person or a suitable CTW designation date cannot be found in the CTW Master file, mark the CTW designation as NULL.
- 3. Generate a list of all records where the Rev4CTW designation is NULL.
- 4. Manually determine the PRID and occupation for each NULL record and generate a CTW Master Update file with the new information.
- 5. Update the CTW Master Table to include the data in the newly generated CTW Master Update file.
- 6. Repeat Steps 2-5 until no records have a Rev4CTW designation of NULL.

D.4 RADIONUCLIDE INSTRUCTIONS

Note: The column indicating a "less than" result has a header of "<" in some files and "X." in others. This document refers to the column as "X."

For the purposes of this evaluation, no distinction is made regarding CTW employer, whether prime contractor or subcontractor.

D.4.1 **All Nuclides**

Correct illegible dates (illegible fields are indicated with Xs for radionuclides other than Am):

- Exclude records with an illegible year.
- If only the day of the month is illegible, assume the 15th.
- If only the month is illegible, assume July.
- If the month and day are illegible, assume July 1.

D.4.2 Mixed Fission Products (MFPBeta/Strontium)

New corrections file: In-vitro stat corrections 2018-12-05.xlsx may be found in ORAUT [2022] in the \source data\ subfolder.

Data Selection

- Use NOCTS In-vitro Data updated as the data source.
- Select records from 01/01/1955 through 12/31/1965 with an Isotope that indicates an MFP result. Refer to In-vitro nuclide list.xlsx for the complete list of MFP codes to be used.
- Exclude records:
 - With a blank Result and a blank X. field,
 - With non-numeric results (e.g., LIP, rerun, lost), with the exception of "DL",
 - If the Units field contains:
 - o "LIP" or "IA",
 - Mass in the denominator (varying gram quantities). These are assumed to be fecal samples,
 - If Date is blank or nonsensical, or
 - With X. = "<" and Result =
 - o 300, or
 - o 500.

Note: This step is used to eliminate gross gamma results listed as the same isotope as gross beta results.

Data Cleanup

- If the Result field is blank and the X. field = "<", assign Result as follows:
 - 1955–1961: 30.
 - **–** 1962–1965: 100.
- If Result = DL (ignore capitalization differences), replace it with the number "1."
- Ignore (delete) uncertainties in results, e.g., "± 19."
- If Units is blank or contains no volume, assign Units as follows:
 - 1955–1959: dpm/750 ml,
 - 1960–03/31/1966:
 - o If result is "<30" or "<50": dpm/500 ml,
 - If result is "<100", "<500", or "<60": dpm/1.5L, and
 - o If X. is blank: dpm/1.5L.
- Incident corrections:
 - Claim [redacted]: incident on [redacted]. Infer a result of <60 dpm/1.5L on [redacted].

Data Adjustments

- Convert all results to units of dpm/day (dpm/1.5L).
 - Do not adjust results with volumes ≥ 1.4 liter. These are assumed to represent a full day's voiding.
 - Normalize results with volumes < 1.4 liter to 1.5 liters (assumed to be one day's voiding).

Statistical Analysis

- Evaluate the censored data using multiple imputation as described in ORAUT-RPRT-0096. The periods for which a similar method and reporting was used and which could be combined to develop an imputation model are:
 - 1955–1961, and
 - 1962–1965.
- Perform the statistical analysis in accordance with the TWOPOS method in the latest version RPRT-0053 as follows:
 - Evaluate two strata: 1) CTW and 2) nonCTW.

D.4.3 **Plutonium**

New corrections file: In-vitro stat corrections 2018-11-15.xlsx may be found in ORAUT [2022] in the \source data\ subfolder.

Data Selection

- Use NOCTS In-vitro Data updated as the data source.
- Select records from 01/01/1955 through 12/31/1990 with an Isotope that indicates a total plutonium or Pu-239 result. Refer to *In-vitro nuclide list.xlsx* for the complete list of Pu codes to be used.
- Exclude records:
 - With a blank Result and a blank X. field.
 - With non-numeric results (e.g., LIP, rerun, lost).
 - If the Units field contains:
 - o "LIP" or "IA,"
 - Mass in the denominator (varying gram quantities). These are assumed to be fecal samples.
 - If Date is blank or nonsensical.
 - With activity units of pCi, nCi, or µCi. These are assumed to be fecal samples.
 - With a date on or within 100 days following chelation for an individual. Use Chelation Data referenced in the Source Data section above. Match individuals based on SSN.
 - Claim [redacted]: Incident mid-1982. Exclude data from 10/24/1982 through 01/06/1983.
 - All results for claim [redacted] beginning in Oct. 1962. Significant [redacted] incurred at this time so results are not representative of coworkers (co-exposure intake model assumes inhalation intakes).

Data Cleanup

- Ignore (delete) uncertainties in results, e.g., "± 19."
- Assume the Units for Unique ID [redacted] are dpm/mL (i.e., 0.28 dpm/1,340 mL).
- If Result is blank or 0 and the X. column contains "<", assume Result is:
 - 0.05 from 1954 through 05/01/1962, and
 - 0.1 for 05/02/1962 and after.

- Designation of missing or incomplete (no volume) units:
 - If Isotope is generic plutonium (i.e., Pu, PU, or any result with no atomic mass #), assume dpm/1.5L, and
 - If Isotope is isotope specific (e.g., Pu-239, Pu 238/239), assume dpm/L.
- Treat negative Result values as censored results, censored at the absolute value of the Result [1].
- A "+" in the X. column is treated as a blank (i.e., an uncensored result).
- Incident corrections:
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.05 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of 0.1 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.1 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.1 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.1 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.1 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.1 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.1 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.1 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.1 dpm/day on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <0.18 dpm/day on [redacted].

Data Adjustments

- Convert all results to units of dpm/day (dpm/1.5L).
 - Do not adjust results with volumes ≥ 1.4 liter. These are assumed to represent a full day's voiding.
 - Normalize results with volumes < 1.4 liter to 1.5 liters (assumed to be one day's voiding).

Statistical Analysis

- Evaluate the censored data using multiple imputation as described in ORAUT-RPRT-0096. Gross alpha and isotopic plutonium results are imputed separately.
 - The periods for which a similar method and reporting was used and which could be combined to develop an imputation model for gross alpha Pu results are:

- 1954–1959,
- 1960-05/01/1962,
- o 05/02/1962–1965, and
- o 1966–1990.
- Isotopic Pu (any variation of "Pu239"),
 - 1981–1990.
- Additional data adjustment: beginning on 01/01/1981, correct isotopic Pu results (any variation of "Pu239") to Pu gross alpha by multiplying by 1.69 (10-year 12% Pu mix ratio).
 - "Pu238/239" (or similar variants) are assumed to be Pu gross alpha results and are not adjusted.
- Perform the statistical analysis for 1955 through 1990 in accordance with the TWOPOS method in the latest version RPRT-0053 evaluating two strata: 1) CTW and 2) nonCTW.

D.4.4 <u>Uranium</u>

Data Selection

- Use NOCTS In-vitro Data updated as the data source.
- Select records from 01/01/1953 through 12/31/1990 with an Isotope that indicates a uranium result. Refer to In-vitro nuclide list.xlsx for the complete list of U codes to be used. Note that mass and activity measurements will be combined into one data set.
- Exclude records:
 - With a blank Result and a blank X. field.
 - With non-numeric results (e.g., LIP, rerun, lost).
 - If the Units field contains:
 - o "LIP" or "IA,"
 - o Mass in the denominator (varying gram quantities). These are assumed to be fecal samples.
 - If Comments.from.page contains "IA."
 - If Date is blank or nonsensical.

Data Cleanup

If Units is blank or nonsensical:

- Replace "?" or other special character with "u" (micro).
- If result is "<5", assign Units = ug (mass units).
- If result is "<1", assign Units = dpm (activity units).
- If the result is not "<5" or "<1" and
 - Isotope = EU (any capitalization variation), assign Units = dpm (activity units).
 - Isotope ≠ EU, then Units = ug (mass units).
- If Result = 0 and Units = ug/L, set X. = < and Result = 5. (Result is assumed to be censored.)
- If Result is blank and the X. column contains "<", assume Result is:
 - 5 if Units includes "ug" (results in units of mass).
 - 1 if Units includes "dpm" or "d/m" (results in units of activity).
- Ignore (delete) uncertainties in results, e.g., "± 19."
- A "+" in the X. column should be treated as a blank (i.e., an uncensored result).
- Incident corrections:
 - Claim [redacted]: Incident on [redacted]. Infer a result of <1 dpm/1.5L on [redacted].
 - Claim [redacted]: Incident on [redacted]. Infer a result of <5 ug/L on [redacted].

Data Adjustments

- If Units includes "ug" (results in units of mass):
 - 1953–07/10/1961:
 - Multiply Result by 1.5 (all Units are assumed to be per liter regardless of stated volume).
 - If Units \neq ug/1.5L, replace Units with ug/1.5L.
 - 07/11/1961–1990: If Units ≠ ug/1.5L, replace Units with ug/1.5L (all Units are assumed to be per 1.5 liter regardless of stated volume).
- If Units includes "dpm" or "d/m" (results in units of activity):
 - If no volume is included in the Units, assume 1.5L.
 - Do not adjust results with volumes ≥ 1.4 liter. These are assumed to represent a full day's voiding.

Normalize results with volumes < 1.4 liter to 1.5 liters (assumed to be one day's voiding).

Statistical Analysis

- Evaluate the censored data using multiple imputation as described in ORAUT-RPRT-0096. Results with mass and activity units are imputed separately.
 - If Units = ug/1.5L (mass), the periods for which a similar method and reporting was used and which could be combined to develop an imputation model are:
 - o 1953–1981,
 - o 1982–1985, and
 - o 1986–1990.
 - If Units = dpm/1.5L (activity), the periods for which a similar method and reporting was used and which could be combined to develop an imputation model are:
 - o 1953–04/1962,
 - o 05/1962–1981,
 - o 1982–1985, and
 - o 1986–1990.
- Additional data adjustment: If Units = ug/1.5L (results in units of mass), convert Result to Units of dpm/day (activity):
 - 1953–1967: Multiply Result by 1.52 dpm/ug (i.e., assume natural uranium).
 - 1968–1990: Multiply Result by 0.826 dpm/ug (i.e., assume DU).
- Perform the statistical analysis in accordance with the TWOPOS method in the latest version RPRT-0053 as follows:
 - Evaluate two strata: 1) CTW and 2) nonCTW.
 - For nonCTW, evaluate individual years.
 - For CTW, combine (note that there are insufficient results for 1953–1954):
 - o 1979–1980,
 - o 1981–1982,
 - o 1983–1984,
 - o 1985–1986,

- 1987-1988, and
- o 1989–1990.

Cesium-137 D.4.5

New corrections file: In-vivo stat corrections 2018-12-11.xlsx may be found in ORAUT [2022] in the \source data\ subfolder.

Data Selection

- Use **WBC Data updated** as the data source.
 - Select records with Dates from 01/01/1960 through 12/31/1990.
 - Select rows with Nuclide = Cs-137. The result is found in the column headed Result..nCi.
- Exclude records:
 - With a reason of:
 - o "New",
 - o "New Hire", or
 - "New Employee",
 - If Date is blank or nonsensical, or
 - With Nuclide = Cs-137 where the first character of Result..nCi. = X or an X appears in the value to the left of a digit (e.g., "0.X2").
- For a Claim/Date combination with no Nuclide = Cs-137 record but with a record for another nuclide other than chest count radionuclides (Am, Cm, Pu, EU, U, U-234, U-235, U-238), infer a single Cs-137 result. Include Form type in the inferred record.
 - Do not infer a result if all Nuclides for the date are blank and Detector includes the word "Crystal," "Phoswich," or "Phos." (These are indicative of chest counts rather than WBCs.)
 - If date is <01/01/1989, assign Result..nCi. = <1.
 - If date is >12/31/1988, assign Result..nCi. = <2.2.

Data Cleanup

- If Comment includes "MDA activity used," consider the result to be censored.
- When Result..nCi. contains a trailing X character (e.g., "6.5XX"), truncate after the last digit (6.5XX becomes 6.5).
- For multiple rows with the same Claim and Date values and Nuclide = Cs-137:

- If multiple rows have the same Result..nCi., use only one of those results.
- If values of Result..nCi. are not equal, average the results.
- If at least one row has a Cs-137 Result..nCi. value, do not infer results for any others with a blank Result..nCi. (next step).
- If Result..nCi. is blank:
 - Apply MDA..95.CL..nCi. value as the censoring level.
 - If MDA..95.CL..nCi. is also blank:
 - o If date is <01/01/1989, assign Result..nCi. = <1.
 - o If date is >12/31/1988, assign Result..nCi. = <2.2.

Statistical Analysis

- Evaluate the censored data using multiple imputation as described in ORAUT-RPRT-0096. The form types for which a similar method and reporting was used and which could be combined to develop an imputation model are:
 - WBCD. This form was in use from approximately 1960 through the mid-1970s and was used with the 40-cm arc geometry.
 - BB (through 01/1974). This form was untitled and was used in the mid- and late 1970s. The 40-cm arc geometry was being used before February 1974.
 - BB (02/1974 and later). A bed geometry was used after January 1974.
 - IVCR. This was in use from the late 1970s through late 1980s.
 - SSI: Used from 1975–1977.
 - ABACOS. This is the FASTSCAN report and was used from 1986 through 1990.
- Assign rows with Form type = blank, "In Vivo Request," or "Request" to the following categories:
 - 1960 through 11/1974: WBCD,
 - 12/1974 through 05/1979: **BB (02/1974 and later)**,
 - 06/1979 through 10/1989: IVCR, and
 - 11/1989 through 12/1990: ABACOS.
- Perform the statistical analysis in accordance with the TWOPOS method in the latest version RPRT-0053:

- Before 1989, use a generic censoring level of <1.0 for negative or zero TWOPOS results. For 1989 and 1990, use <2.2.
- Evaluate two strata: 1) CTW and 2) nonCTW.
 - o For CTW, combine the years (note that there are no CTW results in 1960):
 - **>** 1964–1966,
 - **>** 1967–1968,
 - > 1969–1971, and
 - **→** 1972–1973.
 - o For nonCTW, combine the years:
 - **>** 1960–1961,
 - > 1965–1966, and
 - **>** 1969–1970.

D.4.6 **Cobalt-60 (Mixed Fission Products Gamma)**

New corrections file: In-vitro stat corrections 2018-12-05.xlsx may be found in ORAUT [2022] in the \source data\ subfolder.

Data Selection

- Use **NOCTS In-vitro Data** with corrections applied as the data source.
- Select records from 01/01/1966 through 12/31/1970 with Isotope =
 - FP (IA),
 - FP(IA),
 - FPIA,
 - IAFP,
 - FP-IA,
 - FP/IA,
 - IA,
 - IA-G, and
 - IA GAMMA.

- Exclude records:
 - With a blank Result,
 - With a nonsensical date,
 - With Units = dpm/1.5L and Result ≤ 250 (these are assumed to be beta results), or
 - If Comment includes "beta".

Data Cleanup

• If Units is blank, assign Units = nCi/1.5L.

Data Adjustments

- If Units includes "dpm" in the numerator, divide Result by 2,220 to get Units of nCi.
- Divide all Results by 2 (to account for the 2 gamma rays emitted by Co-60).

Statistical Analysis

- Evaluate the censored data using multiple imputation as described in ORAUT-RPRT-0096. Gross gamma results are only evaluated for a short (5-year) period, during which the gross beta method did not change. It is presumed that the gross gamma method also did not change during this period. Therefore, the period for which the data could be combined to develop an imputation model is:
 - 1966–1970.
- Perform the statistical analysis in accordance with the TWOPOS method in the latest version RPRT-0053 as follows:
 - Evaluate two strata: 1) CTW and 2) nonCTW.
 - For both strata, evaluate individual years.

D.4.7 **Neptunium**

Two bioassay types (in vivo and in vitro) are used for neptunium analysis; they are addressed separately here.

IN VIVO BIOASSAY

Data Selection

- Use **WBC Data updated** as the data source.
 - Select records from 01/01/1970 through 12/31/1990.
 - For records with the same Claim, Date, and Page:
 - Form.Type = "WBCD" and Nuclide = "I-131" and "K-40" form a matched pair (one I-131 record and one K-40 record). If one these is missing, exclude from the analysis.

- Exclude lines with a blank net c/m field.
- > For each set of lines with the same claim-page-nuclide combination and identical net c/m results, use only one line.
- Form.Type = "BB" and Nuclide = "I-131", and
- Form.Type = "IVCR" and Nuclide = "Cr-51".
- Exclude records:
 - If any values necessary to complete these calculations are missing,
 - With a date on or within 100 days following chelation for an individual. Use Chelation Data referenced in the Source Data section above. Match individuals based on SSN,
 - With Claim = [redacted] and Date = [redacted] (analyzer malfunction).
 - With Claim = [redacted] and Date = [redacted] (analyzer malfunction),
 - With Claim = [redacted] and Date = [redacted] (analyzer malfunction), or
 - With Claim = [redacted] and Date = [redacted] (analyzer malfunction).

Data Adjustments

- Convert the data to nCi Np-237 as follows:
 - If Form.Type = WBCD: $nCi Np-237 = 0.243 \times [I-131 "NET c/m" - (K-40 "NET c/m" \times 0.389)].$
 - If Form.Type = "BB" and Date < 01/01/1975:</p> $nCi Np-237 = 0.01215 \times (I-131 "DIFF counts").$
 - If Form.Type = "BB" and Date > 12/31/1974: $nCi Np-237 = 0.0125 \times (I-131 "DIFF counts").$
 - If Form.Type = "IVCR": nCi Np-237 = 0.211 × Cr-51 "MDA @95% CL (nCi)" × Cr-51 "DIFF counts" ÷ Cr-51 "MDA @95% CL (counts)".

Statistical Analysis

- There are no censored data so multiple imputation is not needed.
- Perform the statistical analysis in accordance with the TWOPOS method in the latest version RPRT-0053 as follows:
 - For TWOPOS results of 0 (uncensored zero), replace results with <0.007 nCi.*

- Evaluate two strata: 1) CTW and 2) nonCTW.
 - o For nonCTW, evaluate individual years. Note that 1990 was not fit because there were no data meeting the selection criteria.
 - o For CTW, combine:
 - **→** 1970–1972,
 - ➤ 1976–1977, and
 - **>** 1988–1989.
- * This value is derived as follows: The average Cr-51 MDA is 423 counts and 14 nCi. A conversion constant of 0.211 and DIFF = 1 (the smallest possible positive value) yields a minimum positive activity of 0.007 nCi.

IN VITRO BIOASSAY

Data Selection

- Use Np data updated and Np data2 updated as the data sources.
- Select records from 01/01/1961 through 12/31/1969.
 - For Np data updated, date = Received.Date. If Received Date is blank, use Bottle.Date. (This is done for consistency; only Bottle Date was reported for most years.)
 - For Np data2 updated, date = Bottle.Date (this is the only date in the file).
- Exclude **Np data updated** records with:
 - Rev4CTW = blank.
 - Comment = "No Np result" or similar,
 - Np..results is blank,
 - Date is blank or has an illegible year.
 - Np..results contains an "X" and does not include "<".
 - A date on or within 100 days following chelation for an individual. Use Chelation Data referenced in the Source Data section above. Match on Payroll.ID, ignoring prefix, or
 - row.ID = [redacted] (considered to be a false positive result).

Data Cleanup

Np data updated

- All records are assumed to be in units of dpm/1.5L.
- If Np..results = "<0.0X" or "<0.XX" replace value with "<0.05".

• For rows with Np..results = "<1", replace value with "<0.1" (logbook entry error/illegibility of decimal place).

Np data2 updated

- For rows with multiple reported dpm.1.5L..x. (where x is 1 or greater) values, average all values to determine the final result for the row.
 - Set censored values equal to the censoring level before averaging.

Statistical Analysis

- Evaluate the censored data using multiple imputation as described in ORAUT-RPRT-0096.
 The periods for which a similar method and reporting was used and which could be combined to develop an imputation model are:
 - 1961–04/1962, and 05/1962 where Np. results = "<0.05", and
 - 05/1962 where Np..results = "<0.1", and 06/1962 through 1969.
- Perform the statistical analysis in accordance with the TWOPOS method in the latest version RPRT-0053 as follows:
 - Evaluate two strata: 1) CTW and 2) nonCTW.
 - For both strata, evaluate individual years. Note that CTW 1964–1969 are not fit because there are only 16 results in the period.

The following sections are unchanged from the Revision 3 analyses.

D.4.8 Tritium

NOCTS H3 Data:

- MDA values:
 - Use the result "<X" values where available if "X" is >0,
 - Otherwise use generic MDAs of:
 - \circ 1 μ Ci/l through 1980,
 - 0.5 μCi/l for 1981 through 1985, and
 - 0.1 μCi/l for 1986 and after.
 - For reported positive, nonzero values less than the generic MDA, use the reported value as the MDA.
- Use the "Date" (column D) as the date of sample collection.
- Use the Claim # field as the individual identifier.

- Data set exclusions and revisions:
 - ID [redacted]: Change result to "<0.5",
 - Exclude ID [redacted] (blank result),
 - Exclude ID [redacted] (blank result),
 - Change all "<0.05" and "< 0.05" results to "<0.5", and
 - Exclude all data from Claim # [redacted] (not an SRS worker).
- For each sample date, determine the individual's CTW designation as described above.
 - Look up the individual name using the SRS NOCTS Names file as needed to assist with CTW determination.
- Calculate annual doses for each claimant in accordance with OTIB-0011 with the following assumptions:
 - Evaluate each individual's CTW and nonCTW data, designated using the CTW designations determined in the previous step, separately and treat as two different workers.
 - If there are more than 90 days between samples, use a Type 3 analysis under the assumption that the person is not routinely monitored.
 - If there is a single non-detect urine sample in a calendar year, do not calculate a dose for that sample because it is assumed to not be part of routine monitoring.
 - Order samples on the same date from lowest to highest.
 - Assign all dose as if it occurred on the bioassay date.
- Statistical analysis:
 - Evaluate CTW and nonCTW strata separately for 1954 through 1990.
 - Sum dose for each individual for each year. Exclude from the statistical analysis any individual with an annual dose of less than 0.001 rem at three significant digits (i.e., less than 0.0005 rem).
 - Calculate GM and GSD values for the total annual doses using RPRT-0053 methodology.

D.4.9 **Americium**

Am logbook data:

Dataset rows will be identified by their DetailID # (DetailID1).

- Do not use records:
 - If the "Am_report_IsLIP" field is True,
 - If the "Am report" and all "discResult" fields are blank,
 - With the following anywhere in the "remarks" field,
 - o "DTPA",
 - o "Am DNR",
 - o "Lost",
 - "Am DNR" (Note that there is an extra space after the R in the spreadsheet),
 - Do not report #6 until rerun and found valid,
 - o DTPA Program, or
 - Rerun #7 (Am) lost.
- Individual discResults for which "Am discResult X IsLip" is TRUE (other "discResult" values for that record are still used).
 - Data exclusions:
 - empid [redacted], incident on [redacted], exclude all results for [redacted],
 - empid [redacted], exclude result on [redacted], false positive,
 - empid [redacted], exclude result on [redacted], false positive.
 - empid [redacted], exclude result on [redacted], false positive,
 - empid [redacted], ingestion intake on [redacted], exclude all results for [redacted],
 - empid [redacted], Pu wound intake on [redacted], exclude all results for [redacted],
 - With a type of "DTPA" or similar, and
 - Within 100 days after receiving chelation as indicated in the Chelation Data spreadsheet. Match results to the chelation spreadsheet using last name and PRID. Disregard PRID prefixes for matching bioassay results to the Chelation Data spreadsheet. If the changedPrid field is blank, use the prid field instead.

Volume corrections:

The following applies to each row of the dataset where unassociated rows are the only row in their block and where rows that are associated with one another are in the same block. For each block, calculate the following summary statistics:

- Mean disc result: the average of the individual disc results from all lines in the block, calculated as mean(Am_discResult1, ..., Am_discResult10).
- Censored disc result: the mean disc result is considered censored if every nonblank disc result in the block is marked as censored.
- Mean report value: the average of the individual report values from all lines in the block, calculated as mean(Am_report). Note that for unassociated rows this will simply be the report value.
- Censored report: the mean report value is considered censored if every nonblank report
 value in the block is marked as censored. Thus, if two associated rows both have a report
 value listed, and one is censored and one is uncensored, the block is considered
 uncensored.
- Volume: sum the sample volumes of all rows within the block.
- Date: the earliest bottle date in the block.
- Detail ID: the minimum Detail ID in the block.
- Acidified volume (a_h_): the acidified volume associated with the Detail ID for the block.
- Create a Multiplier column and populate it as follows:
- For each row with an uncensored mean disc result and an uncensored mean report value, do the following:
 - Calculate each of the following multipliers:
 - 1. Multiplier =1,
 - 2. Multiplier = $300 \div a \ h$,
 - 3. Multiplier = $250 \div min(volume, 250)$,
 - 4. Multiplier = 1.5, and
 - 5. Multiplier = $1.5 \times 250 \div min(volume, 250)$.
 - Calculate the absolute value of the difference between each of the 5 multipliers listed above and the "empirical" multiplier, which is the mean report value divided by the mean disc result.

- Assign the Multiplier with the smallest absolute error.
- For all other rows, assign a Multiplier of 1.
- Manual adjustments to Multiplier column, which override any Multiplier chosen above:
 - Detail ID's 17785-17787 should be assigned a Multiplier of 3.5.
 - Detail ID's 16160-16162 and 19683-19690 should be assigned a multiplier of 30.
 - Remarks that contain "300/XXX" where XXX is a numeric value should be assigned a multiplier of 300/XXX, except for Detail ID's 19647 and 19653.
 - Remarks that contain "250/XXX" where XXX is a numeric value should be assigned a multiplier of 250/XXX, except for Detail ID 4127.
 - Detail ID's 5481-5486 should be assigned a multiplier of 5.
- Using the Multiplier variable described above, calculate the following variables for each block:
 - Adjusted Report: which is defined as the mean disc result multiplied by the Multiplier, unless the mean disc result is missing, in which case, use the mean report value.
 - Censored: which will be the censored disc result variable, unless the mean disc result is missing, in which case, use the censored report variable.
 - The values are in units of dpm/1.5L (i.e., dpm/day).
- Use the following censoring levels for negative/zero values:
 - 1963–1965: 2 dpm/1.5L,
 - 1966–1967: 3 dpm/1.5L,
 - 1968: 1 dpm/1.5L, and
 - 1969–1989: 0.3 dpm/1.5L.
- Evaluate the censored data using multiple imputation as described in ORAUT-RPRT-0096. The periods for which a similar method and reporting was used and which could be combined to develop an imputation model are:
 - 1963–1965,
 - 1966–1967,
 - 1968, and
 - 1969–1989.

- Perform the statistical analysis in accordance with the TWOPOS method in the latest version of RPRT-0053 as follows:
- Evaluate two strata: 1) CTW for 1965–1989 and 2) nonCTW for 1963–1989.
- For CTW, evaluate individual years except 1966–1967, 1983–1984, 1985–1986, and 1987– 1989. For nonCTW, evaluate individual years except 1963-1964 and 1988-1989. Merge grouped years.

ATTACHMENT E CO-EXPOSURE DATA FIGURES

TABLE OF CONTENTS

E.1 Americium Intake Modeling Results	SECT	<u>ION</u> <u>TITLE</u>	<u>PAGE</u>
E.3 Uranium Intake Modeling Results	E.1	Americium Intake Modeling Results	204
E.4 Strontium Intake Modeling Results	E.2	Plutonium Intake Modeling Results	212
E.5 Cobalt-60 Intake Modeling Results	E.3	Uranium Intake Modeling Results	249
E.6 Cesium-137 Intake Modeling Results	E.4	Strontium Intake Modeling Results	268
E.7 Neptunium Intake Modeling Results	E.5	Cobalt-60 Intake Modeling Results	270
LIST OF TABLES TABLE TITLE PAGE E-1 Summary of ²⁴¹ Am nonCTW intake rates and dates. 211 E-2 Summary of plutonium nonCTW intake rates and dates, type M. 247 E-4 Summary of plutonium nonCTW intake rates and dates, type M. 247 E-5 Summary of plutonium nonCTW intake rates and dates, type S. 248 E-6 Summary of plutonium CTW intake rates and dates, type S. 248 E-7 Summary of plutonium CTW intake rates and dates, type S. 248 E-8 Summary of plutonium CTW intake rates and dates, type S. 248 E-9 Summary of plutonium CTW intake rates and dates, type S. 248 E-9 Summary of uranium nonCTW intake rates and dates, type S. 248 E-9 Summary of uranium nonCTW intake rates and dates, type F. 266 E-10 Summary of uranium nonCTW intake rates and dates, type M. 266 E-11 Summary of uranium CTW intake rates and dates, type M. 266 E-11 Summary of uranium CTW intake rates and dates, type S. 267 E-12 Summary of uranium CTW intake rates and dates, type S. 267 E-13 Summary of uranium CTW intake rates and dates, type S. 267 E-14 Summary of uranium CTW intake rates and dates, type S. 267 E-15 Summary of Uranium CTW intake rates and dates, type S. 267 E-16 Summary of FP (strontium) nonCTW intake rates and dates, type S. 267 E-17 Summary of ©Co nonCTW type M intake rates and dates. 269 E-18 Summary of ©Co cTW type M intake rates and dates. 273 E-19 Summary of ©Co CTW type M intake rates and dates. 273 E-19 Summary of 137Cs nonCTW type S intake rates and dates. 273 E-20 Summary of 137Cs nonCTW type F intake rates and dates. 273 E-21 Summary of 137Cs nonCTW type F intake rates and dates. 294 E-22 Summary of 237Np nonCTW intake rates and dates. 294 E-25 Summary of type M 232Th intake rates and dates. 294 E-25 Summary of type M 232Th intake rates and dates. 294 E-25 Summary of type M 232Th intake rates and dates. 294 E-25 Summary of type M 232Th intake rates and dates. 294	E.6	Cesium-137 Intake Modeling Results	274
LIST OF TABLES TABLE TITLE PAGE E-1 Summary of ²⁴¹ Am nonCTW intake rates and dates	E.7	Neptunium Intake Modeling Results	280
E-1 Summary of ²⁴¹ Am nonCTW intake rates and dates	E.8	Thorium Intake Modeling Results	294
E-1 Summary of ²⁴¹ Am nonCTW intake rates and dates		LIST OF TABLES	
E-1 Summary of ²⁴¹ Am nonCTW intake rates and dates	TABL		PAGE
E-23 Summary of ²³⁷ Np nonCTW intake rates and dates	E-2 E-3 E-4 E-5 E-6 E-7 E-8 E-9 E-10 E-11 E-12 E-13 E-14 E-15 E-16 E-17 E-18 E-19 E-20 E-21	Summary of plutonium nonCTW intake rates and dates, type M. Summary of plutonium nonCTW intake rates and dates, type S. Summary of plutonium nonCTW intake rates and dates, type S. Summary of plutonium CTW intake rates and dates, type S. Summary of plutonium CTW intake rates and dates, type M. Summary of plutonium CTW intake rates and dates, type S. Summary of plutonium CTW intake rates and dates, type S. Summary of uranium nonCTW intake rates and dates, type F. Summary of uranium nonCTW intake rates and dates, type M. Summary of uranium CTW intake rates and dates, type S. Summary of uranium CTW intake rates and dates, type F. Summary of uranium CTW intake rates and dates, type F. Summary of uranium CTW intake rates and dates, type S. Summary of FP (strontium) nonCTW intake rates and dates. Summary of FP (strontium) CTW intake rates and dates. Summary of GOC nonCTW type M intake rates and dates. Summary of GOC CTW type S intake rates and dates. Summary of GOC CTW type S intake rates and dates. Summary of GOC CTW type S intake rates and dates. Summary of GOC CTW type S intake rates and dates. Summary of GOC CTW type S intake rates and dates.	
	E-23 E-24 E-25	Summary of ²³⁷ Np nonCTW intake rates and dates	293 294 297

LIST OF FIGURES

<u>FIGUE</u>	<u>TITLE</u>	<u>PAGE</u>
E-1	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line compared with measured bioassay results (dots), nonCTW 50th percentile, 1963 to 1965, type M) 204
E-2	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line compared with measured bioassay results (dots), nonCTW 50th percentile, 1966 to)
E-3	1967, type M	,
E-4	1971, type M	205) 205
E-5	1982, type M	
E-6	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line compared with measured bioassay results (dots), nonCTW 84th percentile, 1963 to	
E-7	1965, type M	
E-8	1967, type M	
E-9	1971, type M	
E-10	1982, type M)
E-11	1989, type M	207) 207
E-12	type MPredicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line compared with measured bioassay results (dots), CTW 50th percentile, 1968 to 1971, type M	
E-13	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line compared with measured bioassay results (dots), CTW 50th percentile, 1972 to 1982,	
E-14	type M	
E-15	type MPredicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line compared with measured bioassay results (dots), CTW 84th percentile, 1966 to 1967, type M)

E-16	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, 1968 to 1971, type M	209
E-17	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, 1972 to 1982,	209
E-18	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, 1983 to 1989, type M	210
E-19	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, all years, type M	210
E-20	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, all years, type M	210
E-21	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all years, type M	211
E-22	Predicted ²⁴¹ Am bioassay results calculated using IMBA-derived ²⁴¹ Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all years, type M	211
E-23	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1955 to 1960, type M	212
E-24	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	212
E-25	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	213
E-26	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	213
E-27	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	213
E-28	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	
E-29	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	214 215
E-30	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	215
E-31	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	216
E-32	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1982 to 1990, type M	

E-33	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1955 to 1960, type S	217
E-34	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	047
L 3E	1961 to 1966, type SPredicted plutonium bioassay results calculated using IMBA-derived plutonium intake	217
E-35		
	rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1967 to 1970, type S	218
E-36	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	2 10
L-30	rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	
	1971 to 1981, type S	218
E-37	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	2 10
_ 0,	rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	
	1982 to 1990, type S	219
E-38	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	
	1955 to 1960, type S	219
E-39	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	
	1961 to 1966, type S	220
E-40	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	
	1967 to 1970, type S	220
E-41	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	
- 40	1971 to 1981, type S	221
E-42	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	004
T 42	1982 to 1990, type S	221
E-43	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	
	1955 to 1960, type SS	222
E-44	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake	222
L-44	rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	
		222
E-45	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake	
•	rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	
	1967 to 1970, type SS	223
E-46	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	
	1971 to 1981, type SS	223
E-47	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW	
	1982 to 1990, type SS	224
E-48	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	
	1955 to 1960, type SS	224

E-49	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1961 to 1966, type SS	. 225
E-50	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	. 220
	1967 to 1970, type SS	. 225
E-51	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW	. 226
E-52	1971 to 1981, type SSPredicted plutonium bioassay results calculated using IDOT-derived plutonium intake	. 220
E-32	rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1982 to 1990, type SS	. 226
E-53	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 to 1960, type M	. 227
E-54	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 to 1966, type M	. 227
E-55	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967	വാര
E-56	to 1970, type MPredicted plutonium bioassay results calculated using IMBA-derived plutonium intake	. 228
L-30	rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1971	
	to 1981, type M	. 228
E-57	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1982	
	to 1990, type M	. 229
E-58	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955	220
E-59	to 1960, type M Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	. 229
E-39	rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1961	
	to 1966, type M	. 230
E-60	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1967	
	to 1970, type M	. 230
E-61	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1971	004
E 60	to 1981, type M	. 231
E-62	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1982	
	to 1990, type M	. 231
E-63	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	. 20 .
	rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955	
	to 1960, type S	. 232
E-64	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake	
	rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961	000
	to 1966, type S	. 232

E-65	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 to 1970, type S	. 233
E-66	to 1970, type SPredicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1971	
E-67	to 1981, type S	. 233
E-68	to 1990, type S	. 234
E-69	to 1960, type S	. 234
E-70	to 1966, type S	. 235
E-71	to 1970, type S	235
E-72	to 1981, type S	236
E-73	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 to 1960, type SS	. 237
E-74	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 to 1966, type SS	. 237
E-75	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 to 1970, type SS	238
E-76	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1971	
E-77	to 1981, type SS	
E-78	to 1990, type SS	. 239
E-79	to 1960, type SS	239
E-80	to 1966, type SS	

E-81	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1971	
E-82	to 1981, type SS	241
	rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1982 to 1990, type SS	241
E-83	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, all years, type M	242
E-84	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, all years, type M	242
E-85	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, all years, type S	243
E-86	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile,	
E-87	all years, type S	243 244
E-88	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, all years, type SS	244
E-89	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all years, type M	245
E-90	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all years, type M	245
E-91	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all years, type S	246
E-92	Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all years, type S	246
E-93	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all years, type SS	247
E-94	Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all years, type SS	247
E-95	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, type F	247
E-96	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, type F	249
	, coro, cypo i	13

E-97	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 50th percentile, nonCTW all	
	years, type M	250
E-98	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 84th percentile, nonCTW all	050
	years, type M	250
E-99	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 50th percentile, CTW all years,	
	type F	251
E-100	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 84th percentile, CTW all years,	
	type F	251
E-101	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 50th percentile, CTW all years,	
	type M	252
E-102	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 84th percentile, CTW all years,	
	type M	252
E-103	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 50th percentile, nonCTW, 1953,	
	type S	253
E-104	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 50th percentile, nonCTW, 1954,	
	type S	253
E-105	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1955 to	
	1956, type S	254
E-106	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1957 to	
	1962, type S	254
E-107	,	
	(line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1963 to	
	1967, type S	255
E-108	,	
	(line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1968 to	
	1981, type S	255
E-109	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1982 to	
	1985, type S	256
E-110		
	(line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1986 to	
	1990, type S	256
E-111	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1953,	
	type S	257
E-112	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates	
	(line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1954,	
	type S	257

E-113	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1955 to 1956, type S	. 258
E-114	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1957 to	
E-115	1962, type S	. 258
E-116	1967, type S	. 259
E-117	1981, type SPredicted uranium bioassay results calculated using IMBA-derived uranium intake rates	. 259
F-118	(line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1982 to 1985, type S	. 260
	(line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1986 to 1990, type S	. 260
E-119	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 to 1956, type S	. 261
E-120	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1957 to	
E-121	1962, type S	. 261
E-122	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1968 to 1990, type S	. 262
E-123	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955 to 1957, type S	. 262
E-124	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1958 to 1962. type S.	. 263
E-125	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1963 to 1967, type S	. 263
E-126	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1968 to 1990, type S	. 264
E-127	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, type S	. 264
E-128	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, type S	. 265
	years, type S	. 200

E-129	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type S	. 265
E-130	Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years,	
E-131	type S	. 266
E-132	nonCTW all years	. 268
E-133	nonCTW all years	. 268
E-134	CTW all years	. 269
E-135	CTW all years	. 269
E-136	type M	. 270
E-137	type M	. 270
E-138	type S	. 271
E-139	type S	. 271
	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type M	
	Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type S Predicted ⁶⁰ Co bioassay results calculated using IMBA-derived ⁶⁰ Co intake rates (line)	. 272
E-143	compared with measured bioassay results (dots), 84th percentile, CTW all years, type S Predicted ¹³⁷ Cs bioassay results calculated using IMBA-derived ¹³⁷ Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1960 to	. 272
E-144	1966, type F	. 274
E-145	1990, type F	. 274
E-146	1966, type F	. 275
	compared with measured bioassay results (dots), 84th percentile, nonCTW 1967 to 1990, type F	. 275

E-147	Predicted ¹³⁷ Cs bioassay results calculated using IMBA-derived ¹³⁷ Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1960 to 1966,	
E-148	type F Predicted ¹³⁷ Cs bioassay results calculated using IMBA-derived ¹³⁷ Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 to 1990,	. 275
E-149	type F	. 276
E_150	compared with measured bioassay results (dots), 84th percentile, CTW 1960 to 1966, type F	. 276
L-130	compared with measured bioassay results (dots), 84th percentile, CTW 1967 to 1990, type F	. 277
E-151	Predicted ¹³⁷ Cs bioassay results calculated using IMBA-derived ¹³⁷ Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years,	
E-152	type F Predicted ¹³⁷ Cs bioassay results calculated using IMBA-derived ¹³⁷ Cs intake rates (line)	. 277
⊏ 152	compared with measured bioassay results (dots), 84th percentile, nonCTW all years, type F	. 278
	compared with measured bioassay results (dots), 50th percentile, CTW all years, type F Predicted ¹³⁷ Cs bioassay results calculated using IMBA-derived ¹³⁷ Cs intake rates (line)	278
	compared with measured bioassay results (dots), 84th percentile, CTW all years, type F Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line)	279
	compared with measured bioassay results (dots), 50th percentile, nonCTW 1961 to 1963, type M	. 280
E-156	Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1964 to 1967, type M	. 280
E-157	Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1968 to	
E-158	1969, type M	. 281
E-159	1972, type M	. 281
E-160	1974, type M	. 281
	compared with measured bioassay results (dots), 50th percentile, nonCTW 1975 to 1979, type M	. 282
E-161	Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1980 to	202
E-162	1989, type M	. 282
E-163	1963, type M	. 282
	compared with measured bioassay results (dots), 84th percentile, nonCTW 1964 to 1967, type M	. 283

E-164						Np intake rates (line)	
	compared with mea 1969, type M	asured bloa	issay results	(dots),	84th percentile, r	100 C I VV 1968 to	283
E-165		assay resu	ilts calculated	l using	IMBA-derived ²³⁷	Np intake rates (line)	
	compared with mea		•	` ,	84th percentile, r	nonCTW 1970 to	000
E-166			ilte calculated		IMRA-derived ²³⁷	Np intake rates (line)	283
L-100	compared with mea	•		_		. ,	
	1974, type M				·		284
E-167						Np intake rates (line)	
	compared with mea		-	•	84th percentile, r	nonCTW 1975 to	004
E_168	1979, type M		lte calculated	l usina	IMRA-derived ²³⁷	Np intake rates (line)	284
L-100	compared with mea						
	1989, type M		•	` '			284
E-169						Np intake rates (line)	
			-		50th percentile, (CTW 1961 to 1963,	
E 170	type M				IMPA dariyad 237	Np intake rates (line)	285
E-1/U						CTW 1970 to 1972,	
	type M		•	` ,		51 VV 1570 to 1572,	285
E-171					IMBA-derived ²³⁷	Np intake rates (line)	
	•	asured bioa	assay results	(dots),	50th percentile, 0	CTW 1973 to 1974,	
F 470	type M		ulto coloviloto	ا	INADA dariyad 237	No intoleo rotoo (lino)	286
E-1/2	-	•		_		Np intake rates (line) CTW 1975 to 1979,	
	type M		•	` '		51 VV 1575 to 1575,	286
E-173	Predicted ²³⁷ Np bio	assay resu	ilts calculated	using	IMBA-derived ²³⁷	Np intake rates (line)	
			-		=	CTW 1980 to 1989,	
□ 17 4	type M		ulto coloulatos		IMPA dariyad 237	Np intake rates (line)	287
E-1/4						CTW 1961 to 1963,	
	type M			(uoto),			287
E-175		assay resu	ılts calculated	using	IMBA-derived ²³⁷	Np intake rates (line)	
	•	asured bioa	assay results	(dots),	84th percentile, 0	CTW 1970 to 1972,	
C 176	type M		ulto coloulatos	Lucina	IMPA dariyad 237	Np intake rates (line)	288
E-1/0						CTW 1973 to 1974,	
	-		•	` ,	-		288
E-177	Predicted ²³⁷ Np bio	assay resu	ilts calculated	using	IMBA-derived ²³⁷	Np intake rates (line)	
		asured bioa	ssay results	(dots),	84th percentile, 0	CTW 1975 to 1979,	
⊏ 170	type M		ulto coloulatos	Lucipa	IMPA dariyad 237	Np intake rates (line)	289
E-1/0						CTW 1980 to 1989,	
	type M				•		289
E-179	Predicted ²³⁷ Np bio	assay resu	ilts calculated	l using	IMBA-derived ²³⁷	Np intake rates (line)	
	compared with me						
	urinalysis results, t	ype M					290

E-180	Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, WBCs, type M	. 290
E-181	7.00=	. 291
E-182	Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, WBCs, type M	. 291
E-183	Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, urinalysis results, type M	. 292
E-184	Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, WBCs, type M	. 292
E-185	Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, urinalysis results, type M	. 293
E-186	Predicted ²³⁷ Np bioassay results calculated using IMBA-derived ²³⁷ Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, WBCs, type M	. 293
E-187	Predicted ²³² Th bioassay results calculated using IMBA-derived ²³² Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 11/01/1972 to 05/31/1980, type M	. 294
E-188	Predicted ²³² Th bioassay results calculated using IMBA-derived ²³² Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 11/01/1972 to 05/31/1980, type M	. 294
E-189	Predicted ²³² Th bioassay results calculated using IMBA-derived ²³² Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 11/01/1972 to 05/31/1980, type M	. 295
E-190		. 295
E-191	Predicted ²³² Th bioassay results calculated using IMBA-derived ²³² Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 11/01/1972 to 05/31/1980, type S	. 296
E-192	Predicted ²³² Th bioassay results calculated using IMBA-derived ²³² Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 11/01/1972 to 05/31/1980, type S	. 296
E-193	Predicted ²³² Th bioassay results calculated using IMBA-derived ²³² Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 11/01/1972 to 05/31/1980, type S	. 296
E-194	Predicted ²³² Th bioassay results calculated using IMBA-derived ²³² Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 11/01/1972 to 05/31/1980, type S	. 290
	00/0 // 1000, type 0	. 201

The supporting data for the figures in this attachment are contained in ORAUT [2022] in the \intake modeling\ subfolder.

E.1 AMERICIUM INTAKE MODELING RESULTS

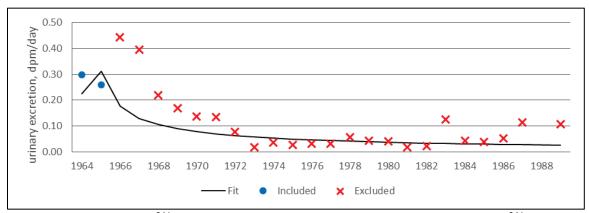


Figure E-1. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, 1963 to 1965, type M.

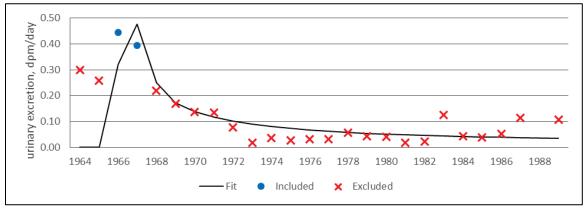


Figure E-2. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, 1966 to 1967, type M.

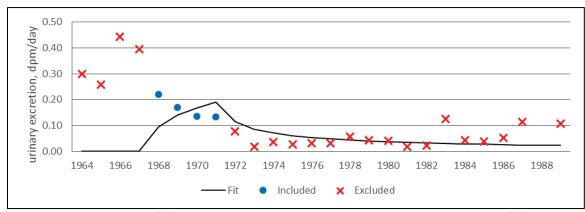


Figure E-3. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, 1968 to 1971, type M.

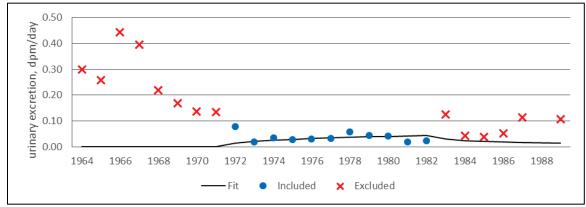


Figure E-4. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, 1972 to 1982, type M.

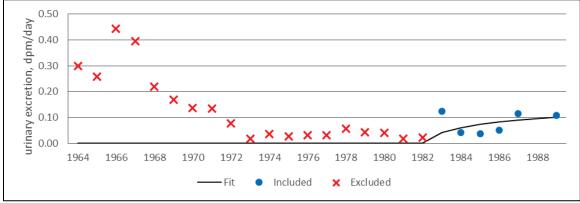


Figure E-5. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, 1983 to 1989, type M.

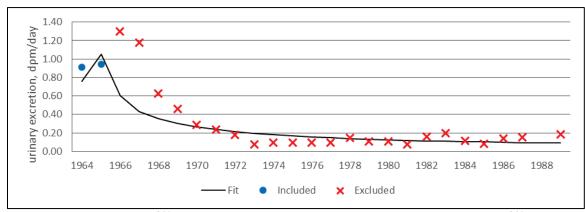


Figure E-6. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, 1963 to 1965, type M.

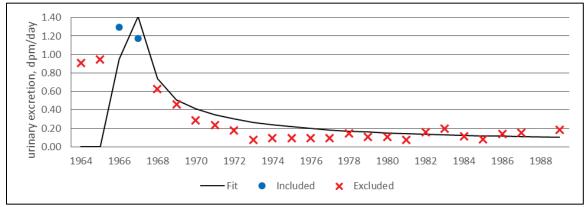


Figure E-7. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, 1966 to 1967, type M.

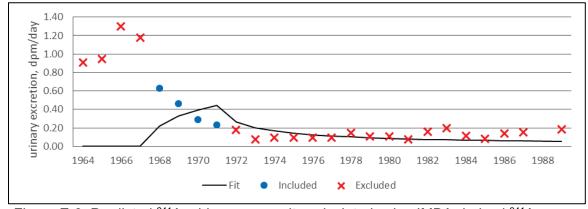


Figure E-8. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, 1968 to 1971, type M.

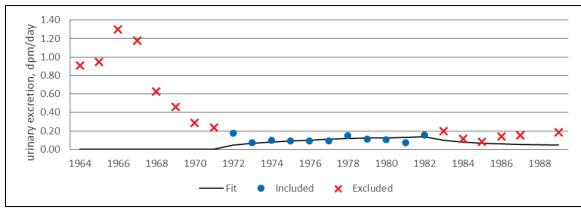


Figure E-9. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, 1972 to 1982, type M.

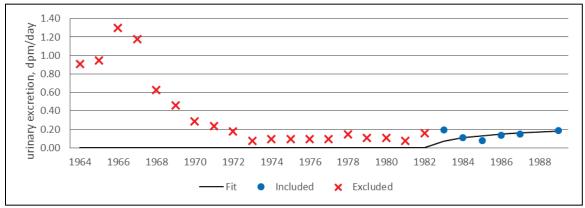


Figure E-10. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, 1983 to 1989, type M.

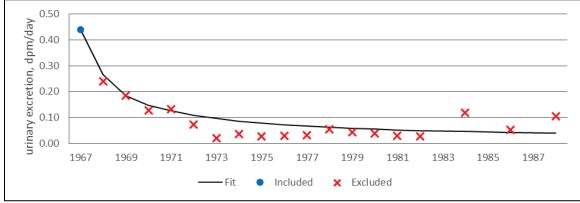


Figure E-11. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, 1966 to 1967, type M.

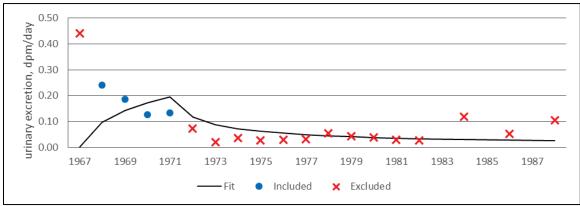


Figure E-12. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, 1968 to 1971, type M.

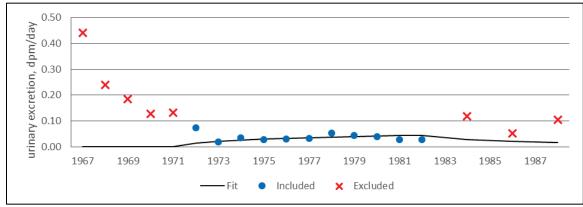


Figure E-13. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, 1972 to 1982, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

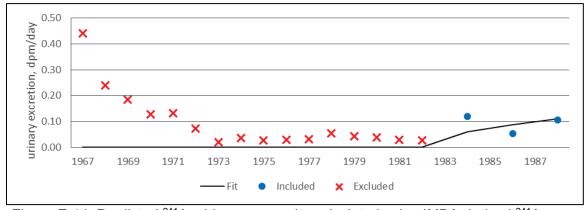


Figure E-14. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, 1983 to 1989, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

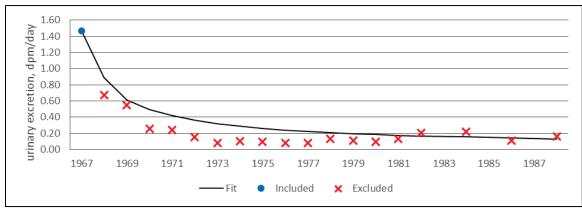


Figure E-15. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, 1966 to 1967, type M.

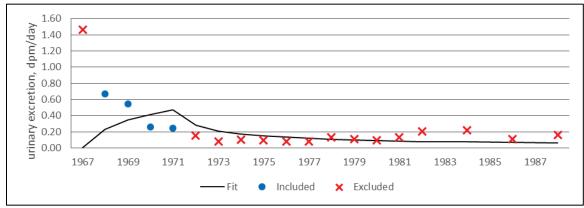


Figure E-16. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, 1968 to 1971, type M.

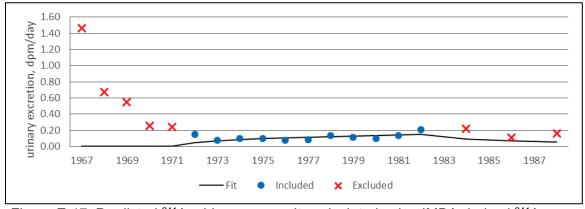


Figure E-17. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, 1972 to 1982, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

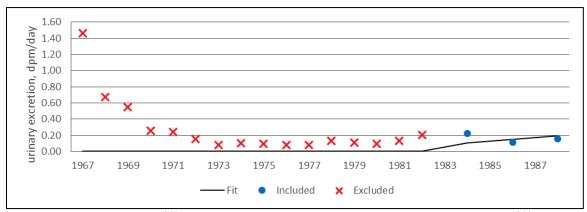


Figure E-18. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, 1983 to 1989, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

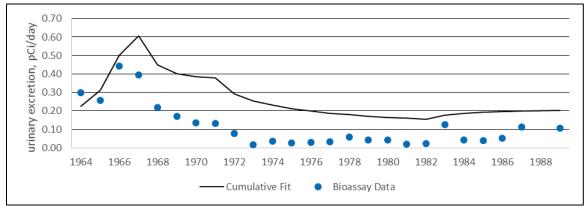


Figure E-19. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, all years, type M.

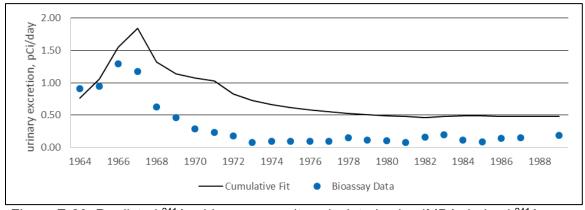


Figure E-20. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, all years, type M.

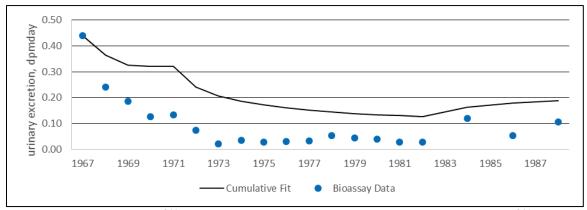


Figure E-21. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all years, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

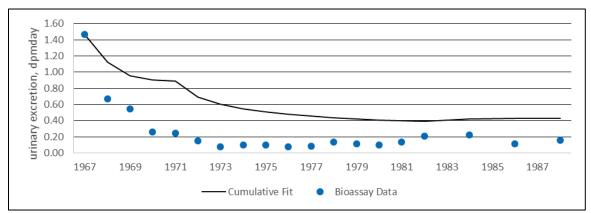


Figure E-22. Predicted ²⁴¹Am bioassay results calculated using IMBA-derived ²⁴¹Am intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all years, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-1. Summary of ²⁴¹Am nonCTW intake rates (dpm/d) and dates.

Table 2 11 Carrillary C. 7 th Horie 111 mante rates (april, a) and dates								
		50th	84th		Adjusted	95th		
Start	End	percentile	percentile	GSD	GSD	percentile		
01/01/1963	12/31/1965	31.32	105.9	3.38	3.38	232		
01/01/1966	12/31/1967	57.61	170.3	2.96	3.00	351		
01/01/1968	12/31/1971	16.86	39.51	2.34	3.00	102.7		
01/01/1972	12/31/1982	2.61	8.158	3.13	3.13	17.0		
01/01/1983	12/31/1989	7.359	13.24	1.80	3.00	44.8		

Table E-2. Summary of ²⁴¹Am CTW intake rates (dpm/d) and dates.^a

Table E 2. Callinary of 7 th 6 TV make faces (april a) and dates.										
Start	End	50th percentile	84th percentile	GSD	Adjusted GSD	95th percentile				
01/01/1966	12/31/1967	61.38	203.9	3.32	3.32	442				
01/01/1968	12/31/1971	17.33	41.57	2.40	3.00	106				
01/01/1972	12/31/1982	2.697	8.694	3.22	3.22	18.5				
01/01/1983	12/31/1989	8.248	14.21	1.72	3.00	50.3				

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

E.2 PLUTONIUM INTAKE MODELING RESULTS

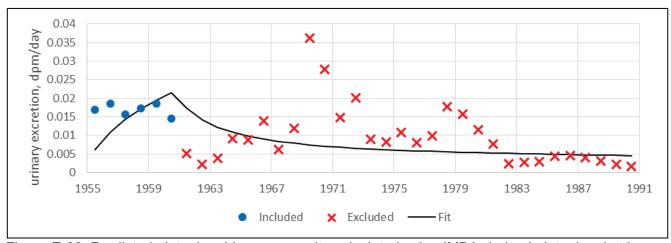


Figure E-23. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1955 to 1960, type M.

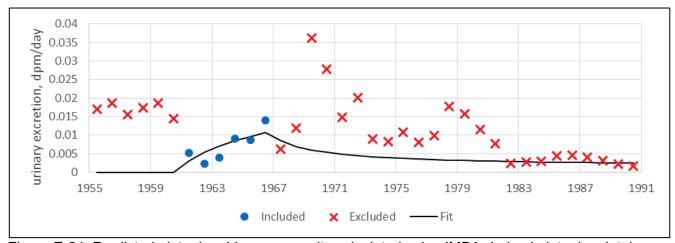


Figure E-24. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1961 to 1966, type M.

00 Effective Date: 03/05/2024

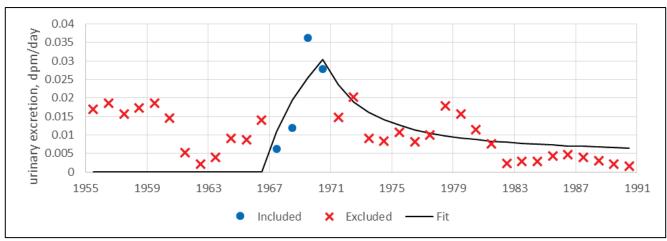


Figure E-25. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1967 to 1970, type M.

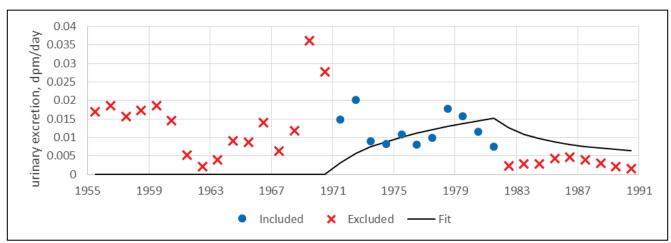


Figure E-26. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1971 to 1981, type M.

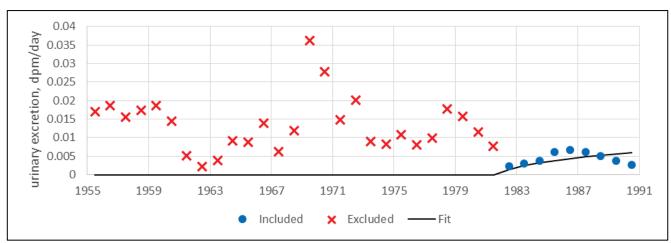


Figure E-27. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1982 to 1990, type M.

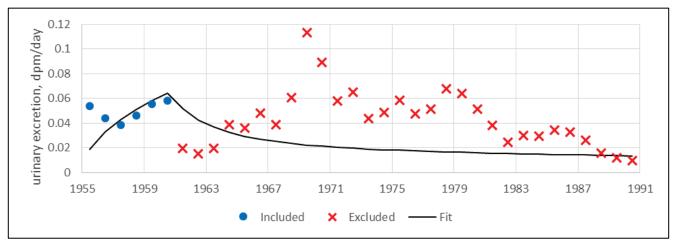


Figure E-28. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1955 to 1960, type M.

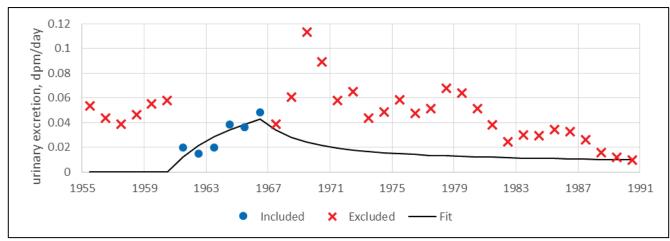


Figure E-29. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1961 to 1966, type M.

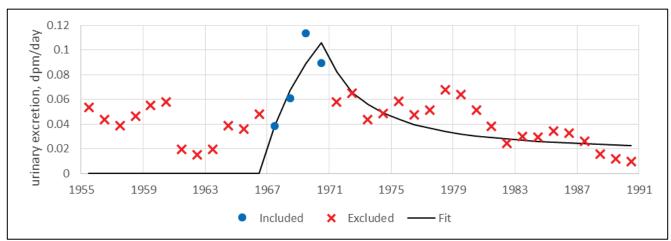


Figure E-30. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1967 to 1970, type M.

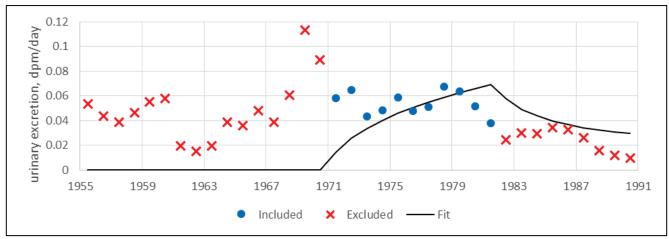


Figure E-31. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1971 to 1981, type M.

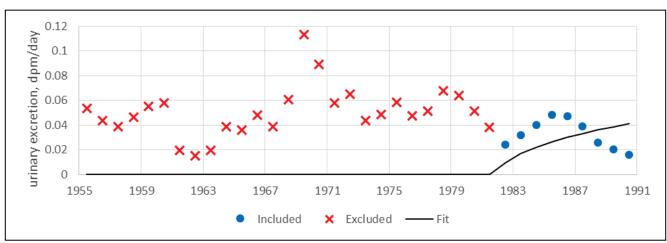


Figure E-32. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1982 to 1990, type M.

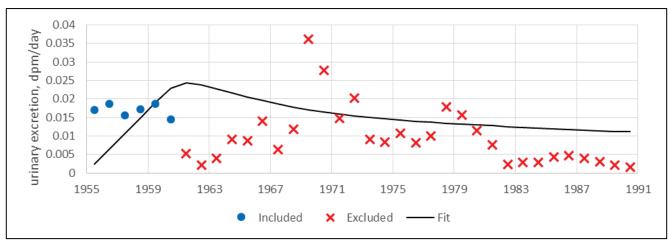


Figure E-33. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1955 to 1960, type S.

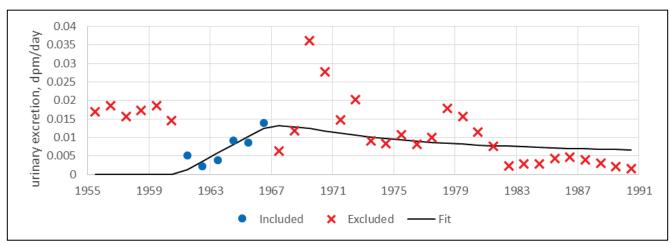


Figure E-34. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1961 to 1966, type S.

Figure E-35. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1967 to 1970, type S.

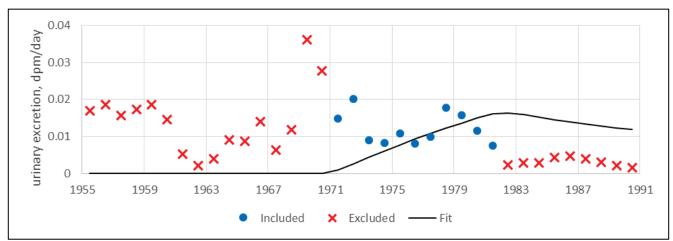


Figure E-36. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1971 to 1981, type S.

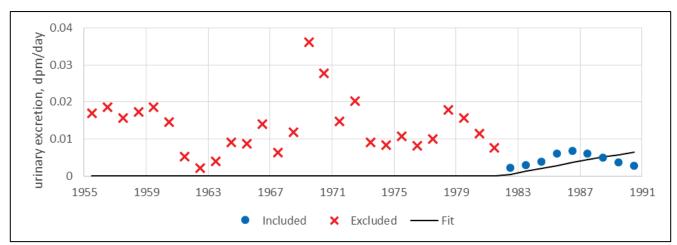


Figure E-37. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1982 to 1990, type S.

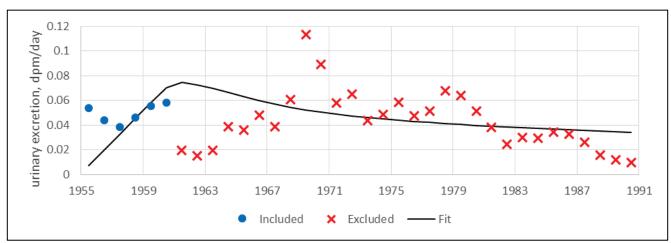


Figure E-38. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1955 to 1960, type S.

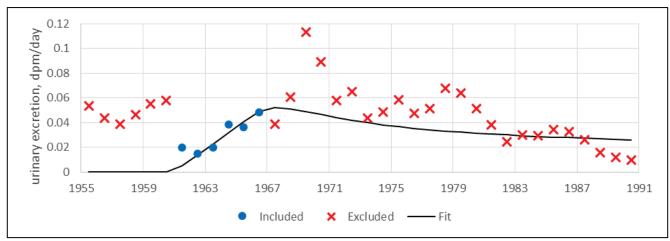


Figure E-39. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1961 to 1966, type S.

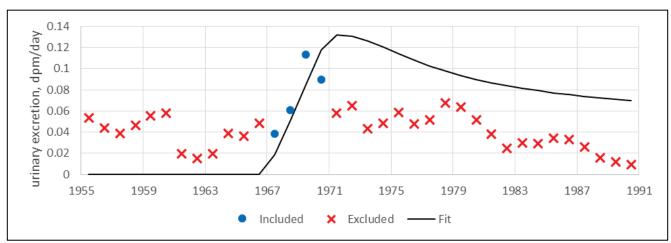


Figure E-40. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1967 to 1970, type S.

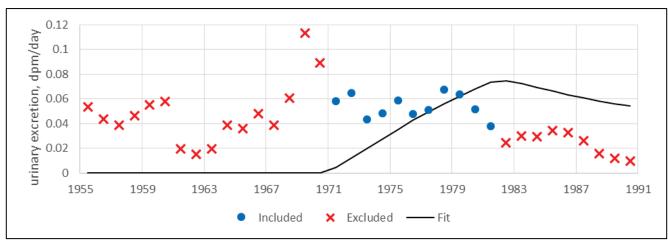


Figure E-41. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1971 to 1981, type S.

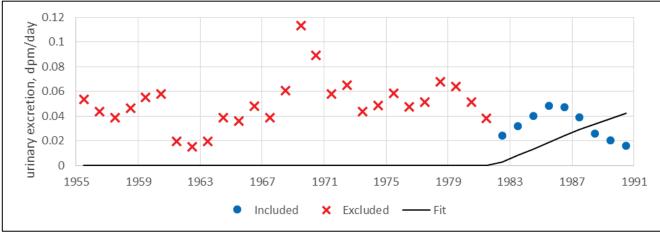


Figure E-42. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1982 to 1990, type S.

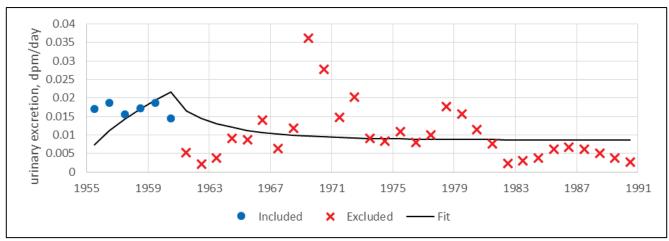


Figure E-43. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1955 to 1960, type SS.

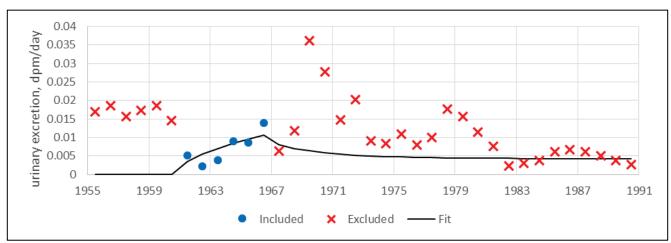


Figure E-44. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1961 to 1966, type SS.

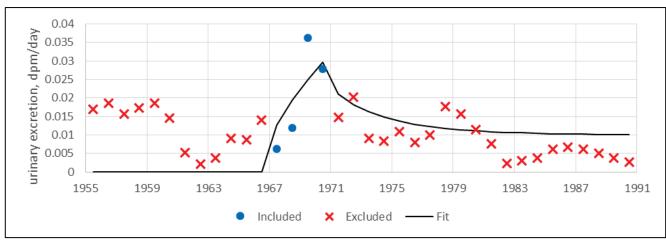


Figure E-45. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1967 to 1970, type SS.

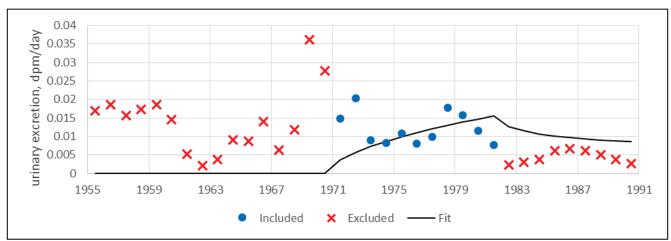


Figure E-46. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1971 to 1981, type SS.

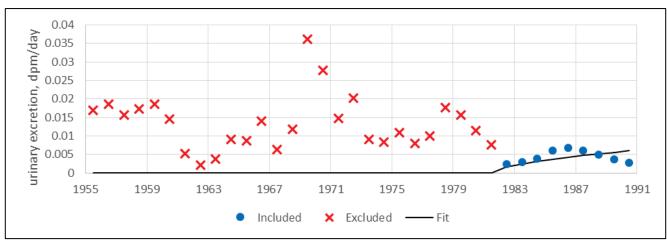


Figure E-47. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1982 to 1990, type SS.

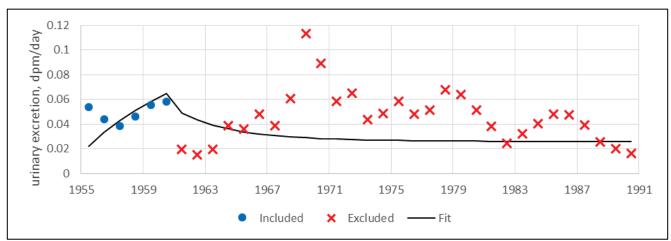


Figure E-48. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1955 to 1960, type SS.

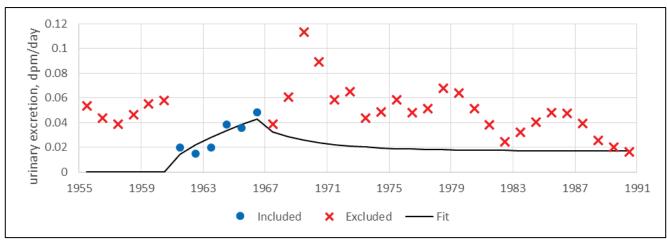


Figure E-49. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1961 to 1966, type SS.

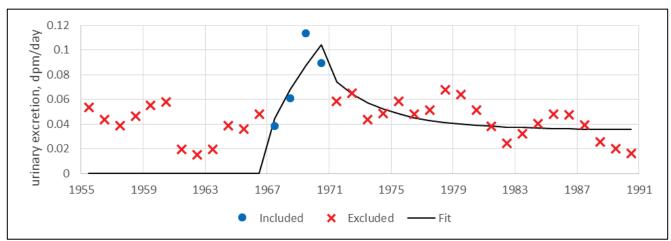


Figure E-50. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1967 to 1970, type SS.

Effective Date: 03/05/2024

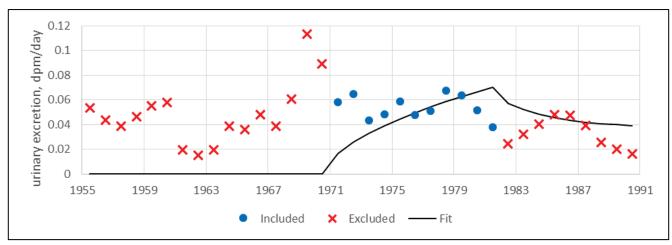


Figure E-51. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1971 to 1981, type SS.

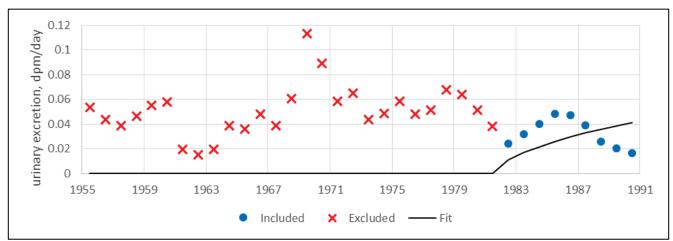


Figure E-52. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1982 to 1990, type SS.

Revision No. 00 Effective Date: 03/05/2024

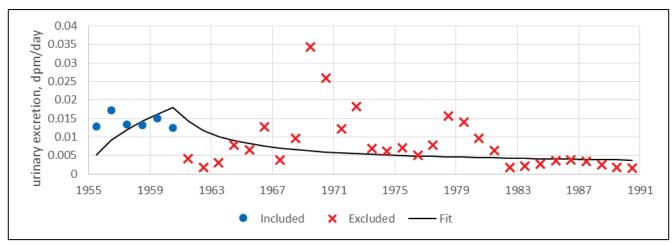


Figure E-53. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 to 1960. type M.

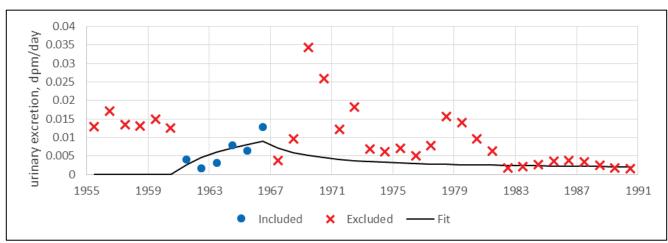


Figure E-54. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 to 1966, type M.

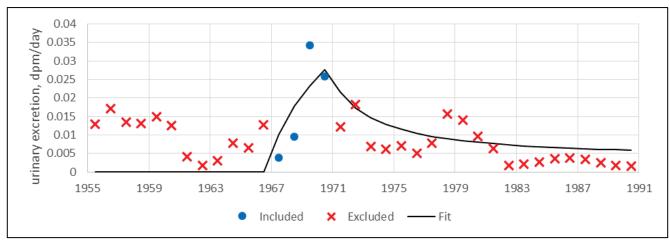


Figure E-55. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 to 1970, type M.

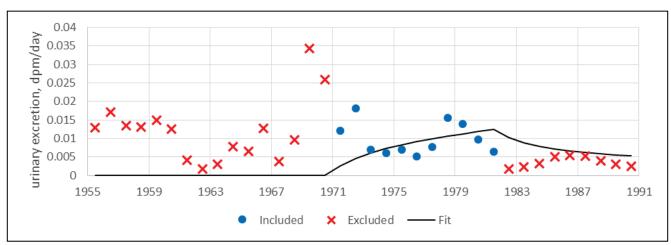


Figure E-56. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1971 to 1981, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Revision No. 00

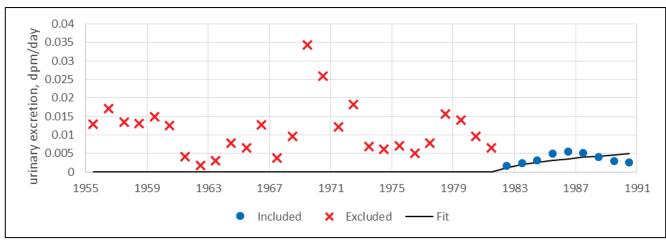


Figure E-57. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1982 to 1990, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

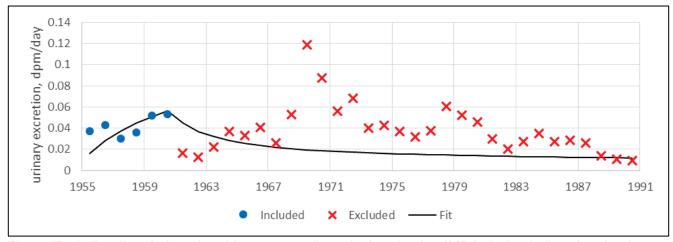


Figure E-58. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955 to 1960, type M.

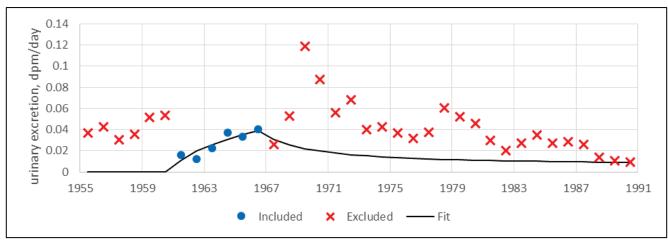


Figure E-59. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1961 to 1966, type M.

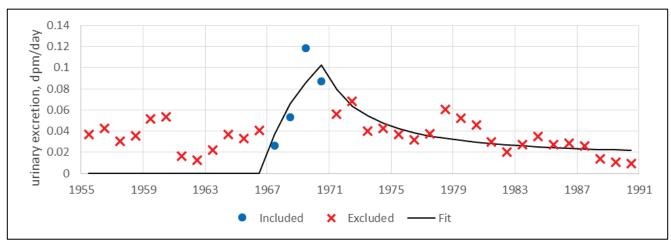


Figure E-60. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1967 to 1970, type M.

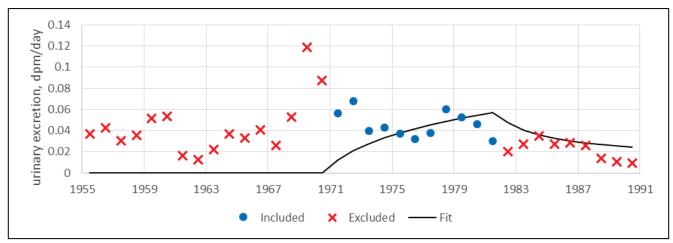


Figure E-61. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1971 to 1981, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

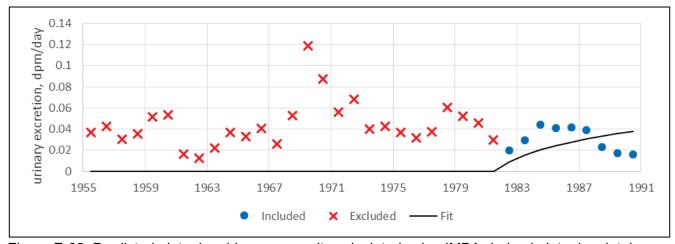


Figure E-62. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1982 to 1990, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

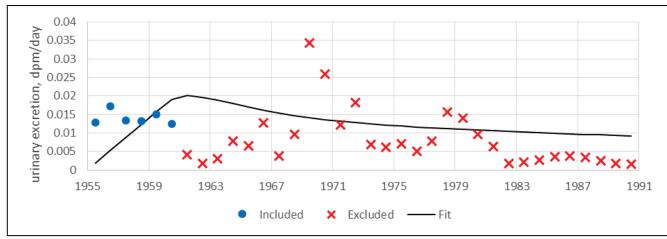


Figure E-63. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 to 1960. type S.

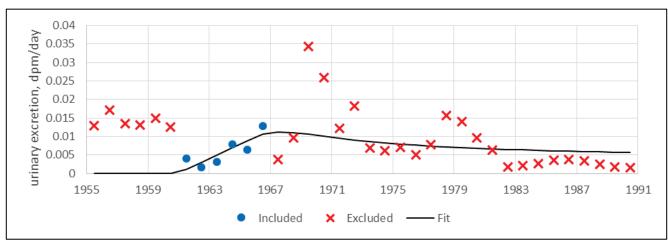


Figure E-64. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 to 1966, type S.

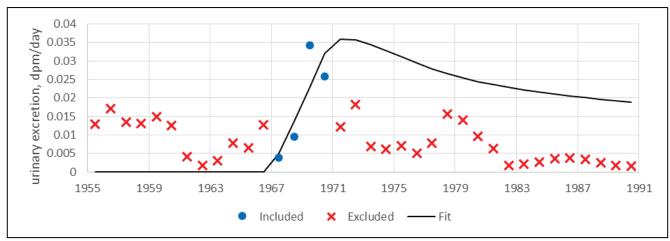


Figure E-65. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 to 1970, type S.

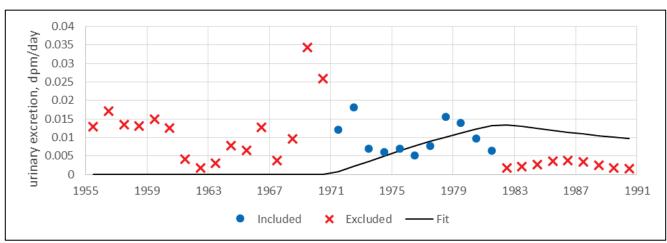


Figure E-66. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1971 to 1981, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Revision No. 00



Figure E-67. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1982 to 1990, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

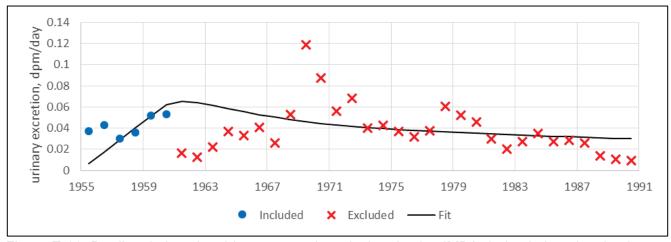


Figure E-68. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955 to 1960, type S.

Revision No. 00

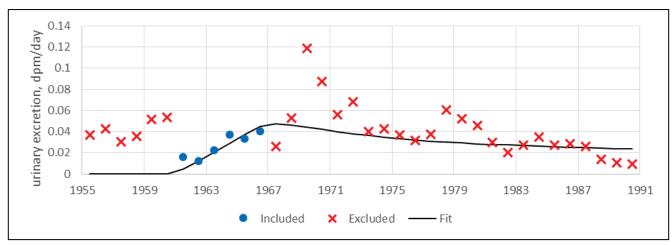


Figure E-69. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1961 to 1966, type S.

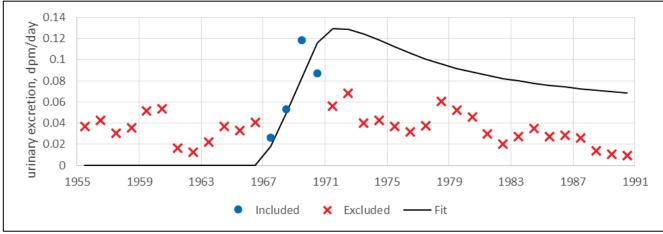


Figure E-70. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1967 to 1970, type S.

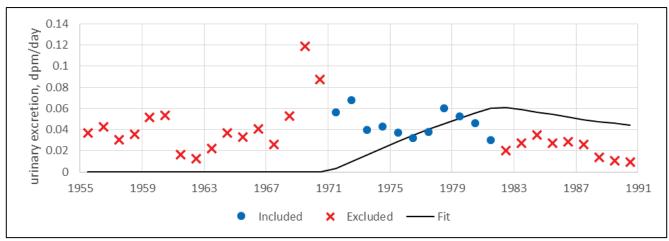


Figure E-71. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1971 to 1981, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

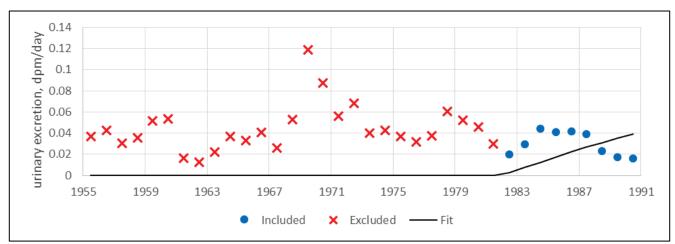


Figure E-72. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1982 to 1990, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

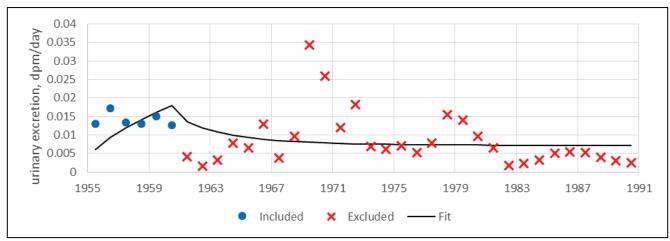


Figure E-73. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 to 1960, type SS.

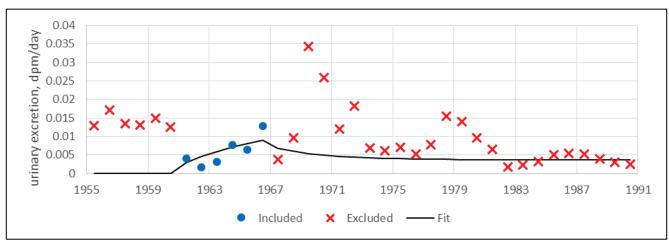


Figure E-74. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 to 1966, type SS.

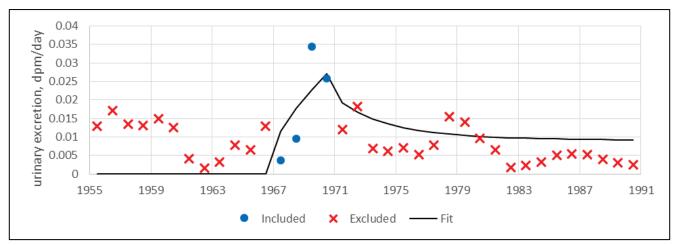


Figure E-75. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 to 1970, type SS.

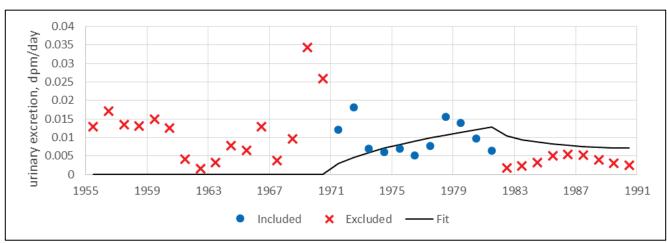


Figure E-76. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1971 to 1981, type SS. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Revision No. 00

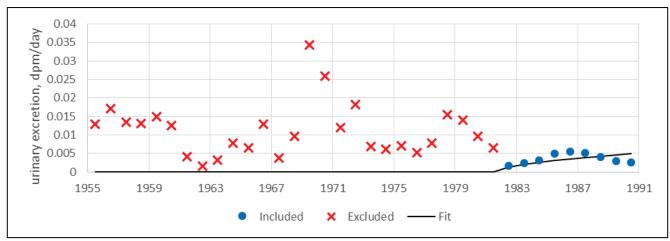


Figure E-77. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1982 to 1990, type SS. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

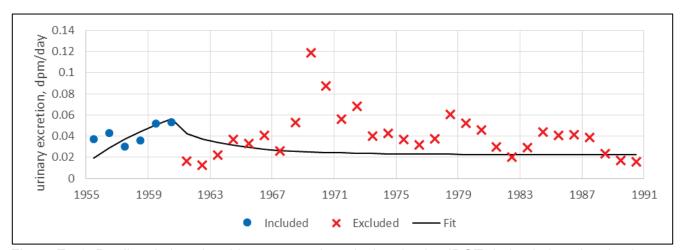


Figure E-78. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955 to 1960, type SS.

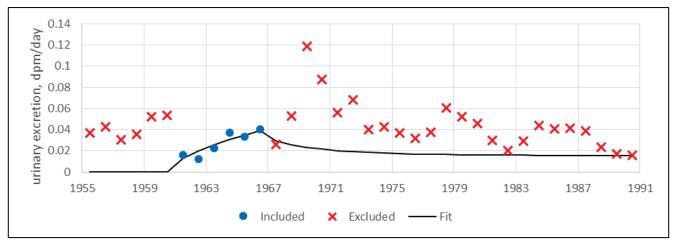


Figure E-79. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1961 to 1966, type SS.

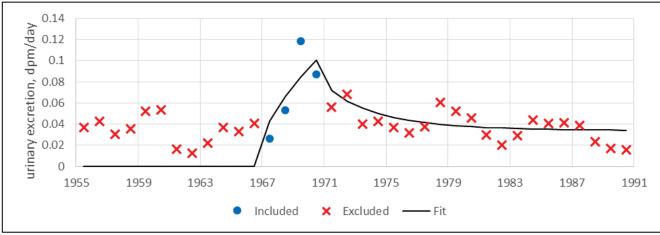


Figure E-80. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1967 to 1970, type SS.

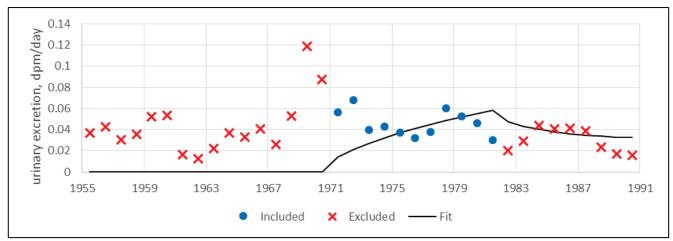


Figure E-81. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1971 to 1981, type SS. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

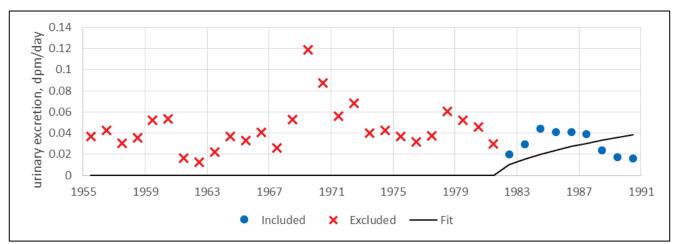


Figure E-82. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1982 to 1990, type SS. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

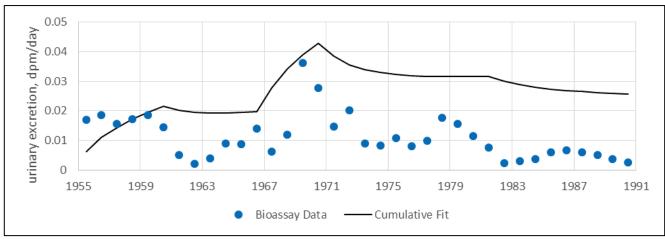


Figure E-83. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, all years, type M.

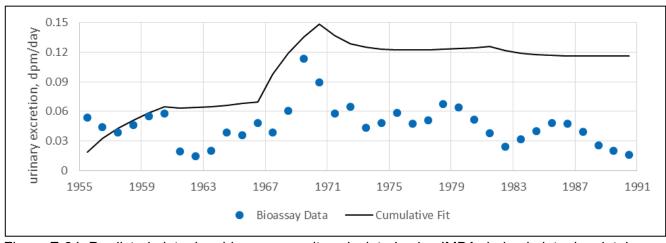


Figure E-84. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, all years, type M.

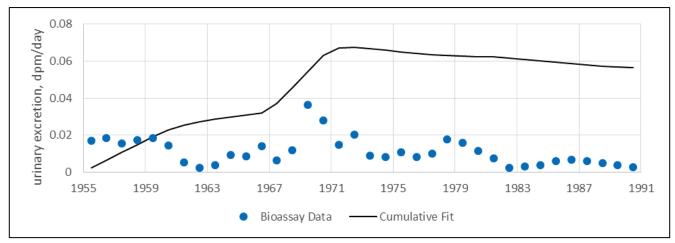


Figure E-85. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, all years, type S.

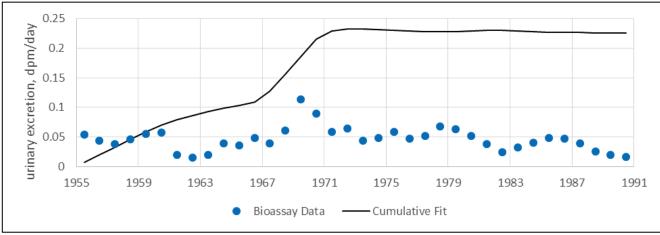


Figure E-86. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, all years, type S.

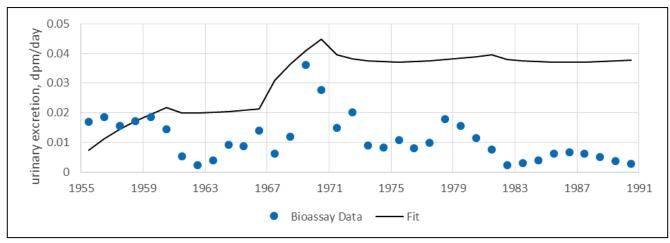


Figure E-87. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 50th percentile, all years, type SS.

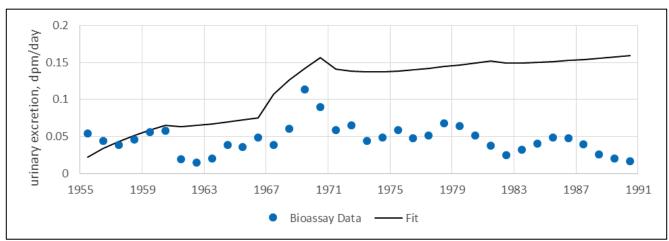


Figure E-88. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), nonCTW 84th percentile, all years, type SS.

Revision No. 00

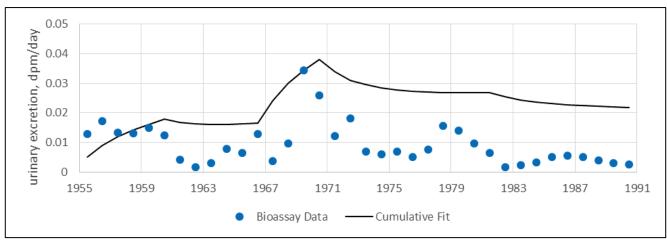


Figure E-89. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all years, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

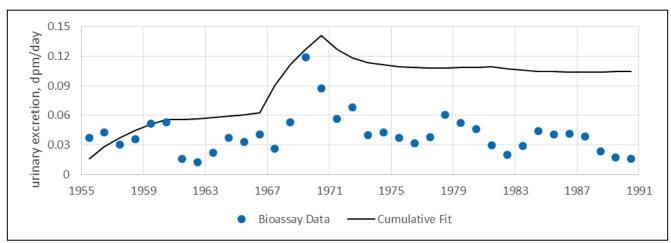


Figure E-90. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all years, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

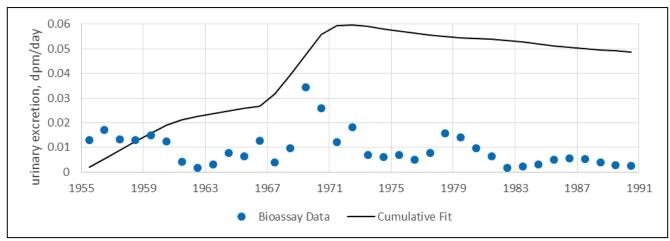


Figure E-91. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all years, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

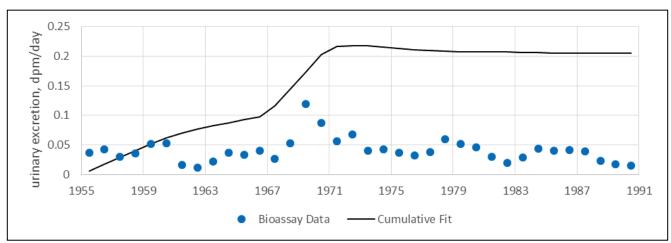


Figure E-92. Predicted plutonium bioassay results calculated using IMBA-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all years, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

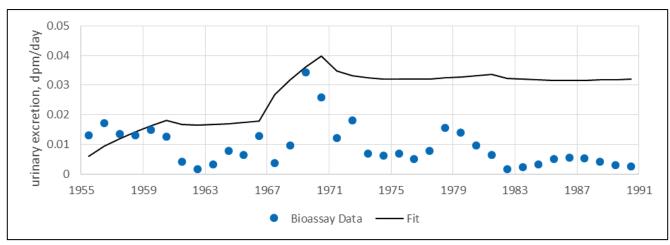


Figure E-93. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 50th percentile, all years, type SS. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

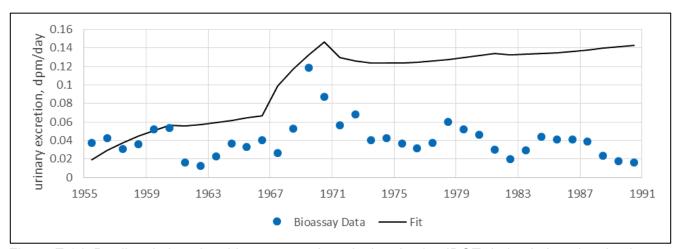


Figure E-94. Predicted plutonium bioassay results calculated using IDOT-derived plutonium intake rates (line) compared with measured bioassay results (dots), CTW 84th percentile, all years, type SS. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-3. Summary of plutonium nonCTW intake rates (dpm/d) and dates, type M.

Start	End	50th percentile	84th percentile	GSD	Adjusted GSD	95th percentile
01/01/1955	12/31/1960	3.265	9.742	2.98	3.00	19.90
01/01/1961	12/31/1966	1.606	6.453	4.02	4.02	15.83
01/01/1967	12/31/1970	5.778	20.17	3.49	3.49	45.17
01/01/1971	12/31/1981	1.692	7.678	4.54	4.54	20.37
01/01/1982	12/31/1990	0.7238	5.03	6.94	6.94	17.5

Table E-4. Summary of plutonium nonCTW intake rates (dpm/d) and dates, type S.

Start	End	50th percentile	84th percentile	GSD	Adjusted GSD	95th percentile
01/01/1955	12/31/1960	66.17	202.9	3.07	3.07	417.98
01/01/1961	12/31/1966	36	141.9	3.94	3.94	343.71
01/01/1967	12/31/1970	154.5	524.1	3.39	3.39	1,152.33
01/01/1971	12/31/1981	27.02	123.3	4.56	4.56	328.24
01/01/1982	12/31/1990	12.56	83.44	6.64	6.64	283.0

Table E-5. Summary of plutonium nonCTW intake rates (dpm/d) and dates, type SS.

		50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	GSD	percentile
01/01/1955	12/31/1960	454	1,360	3.00	3.00	2,766
01/01/1961	12/31/1966	222	893	4.02	4.02	2,192
01/01/1967	12/31/1970	787	2,770	3.52	3.52	6,237
01/01/1971	12/31/1981	230	1,040	4.52	4.52	2,752
01/01/1982	12/31/1990	99	687	6.94	6.94	2,397

Table E-6. Summary of plutonium CTW intake rates (dpm/d) and dates, type M.a

		E041-	0.441-		A -11 41	0541-
		50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	GSD	percentile
01/01/1955	12/31/1960	2.706	8.487	3.14	3.14	17.74
01/01/1961	12/31/1966	1.356	5.89	4.34	4.34	15.19
01/01/1967	12/31/1970	5.279	19.55	3.70	3.70	45.49
01/01/1971	12/31/1981	1.379	6.329	4.59	4.59	16.91
01/01/1982	12/31/1990	0.5974	4.65	7.78	7.78	17.5

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-7. Summary of plutonium CTW intake rates (dpm/d) and dates, type S.a

		50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	ĠSD	percentile
01/01/1955	12/31/1960	54.76	178.9	3.27	3.27	383.92
01/01/1961	12/31/1966	30.63	128.9	4.21	4.21	325.69
01/01/1967	12/31/1970	142.5	514.4	3.61	3.61	1,177.28
01/01/1971	12/31/1981	22.13	100.6	4.55	4.55	267.15
01/01/1982	12/31/1990	10.41	77.13	7.41	7.41	280.7

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-8. Summary of plutonium CTW intake rates (dpm/d) and dates, type SS.a

		50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	GSD	percentile
01/01/1955	12/31/1960	377	1,180	3.13	3.13	2,463
01/01/1961	12/31/1966	188	814	4.33	4.33	2,095
01/01/1967	12/31/1970	719	2,670	3.71	3.71	6,223
01/01/1971	12/31/1981	188	861	4.58	4.58	2,297
01/01/1982	12/31/1990	81.6	636	7.79	7.79	2,391

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

E.3 URANIUM INTAKE MODELING RESULTS

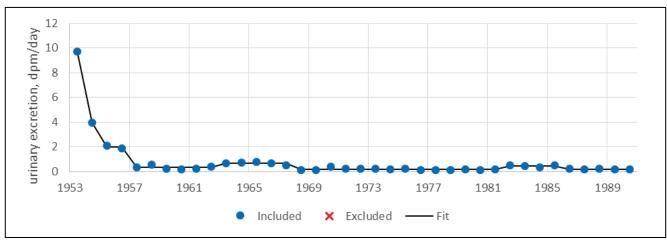


Figure E-95. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, type F.

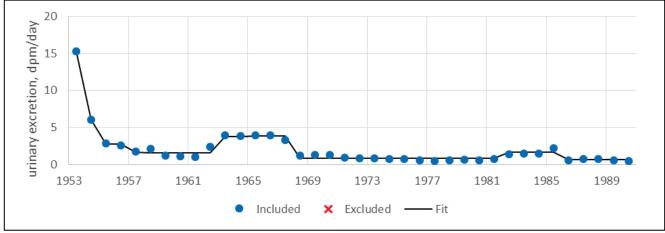


Figure E-96. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, type F.

Revision No. 00

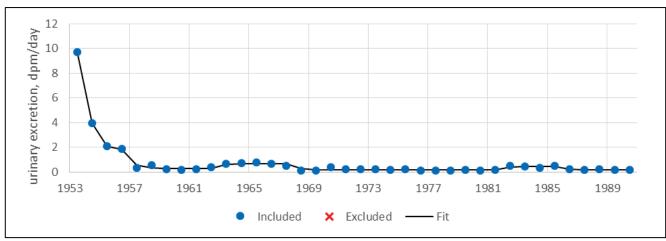


Figure E-97. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, type M.

Figure E-98. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, type M.

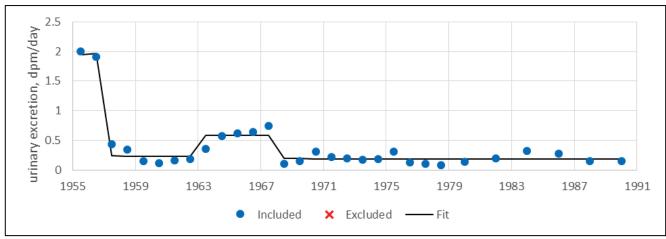


Figure E-99. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type F. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

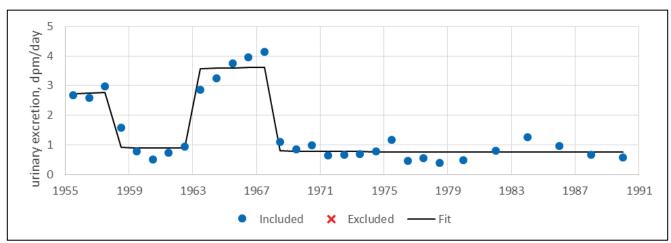


Figure E-100. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type F. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

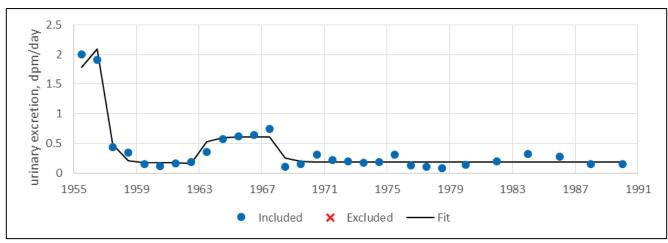


Figure E-101. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

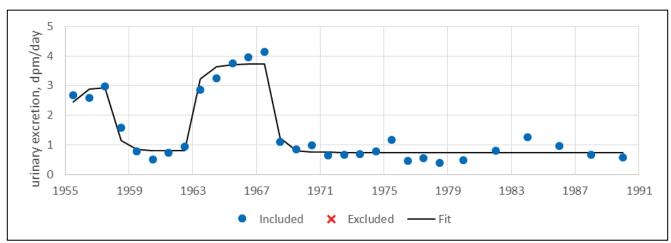


Figure E-102. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Revision No. 00

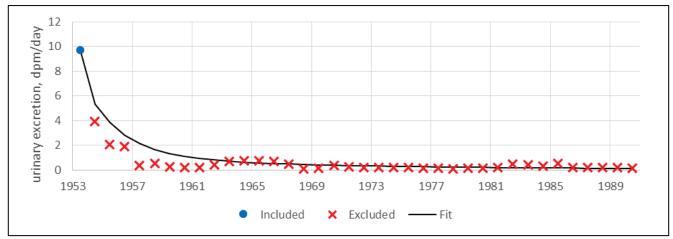


Figure E-103. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW, 1953, type S.

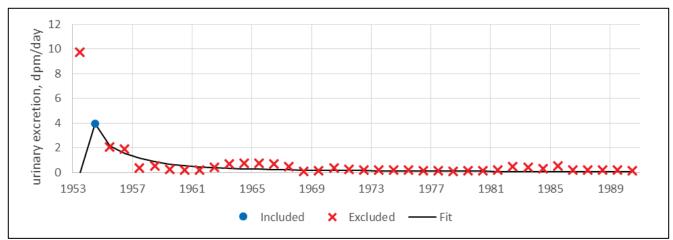


Figure E-104. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW, 1954, type S.

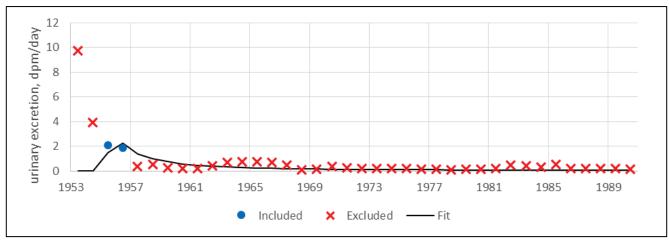


Figure E-105. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1955 to 1956, type S.

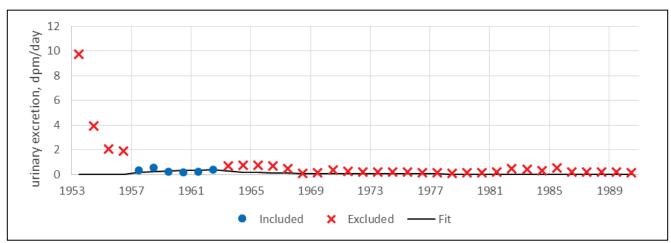


Figure E-106. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1957 to 1962, type S.

Revision No. 00

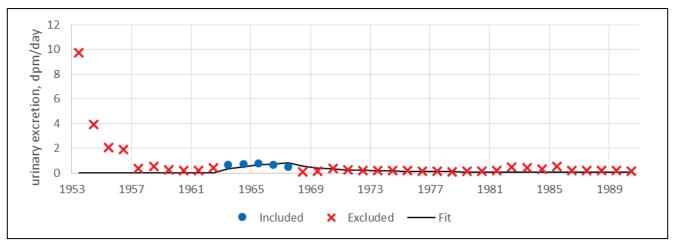


Figure E-107. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1963 to 1967, type S.

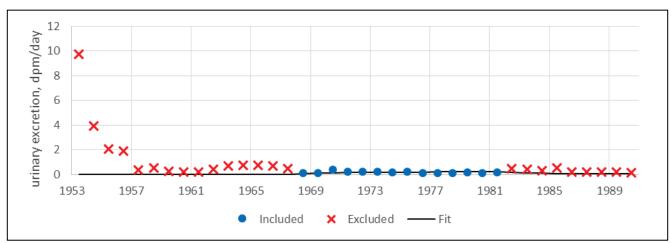


Figure E-108. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1968 to 1981, type S.

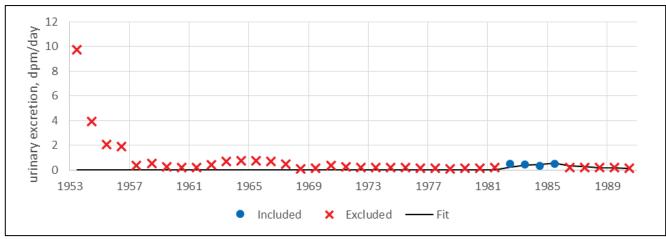


Figure E-109. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1982 to 1985, type S.

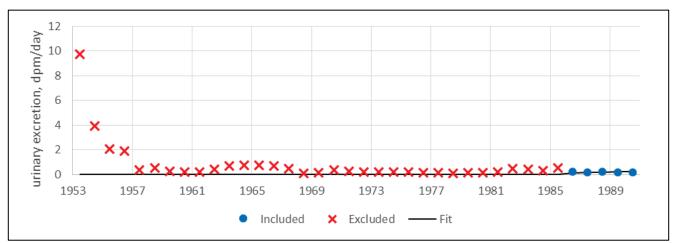


Figure E-110. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1986 to 1990, type S.

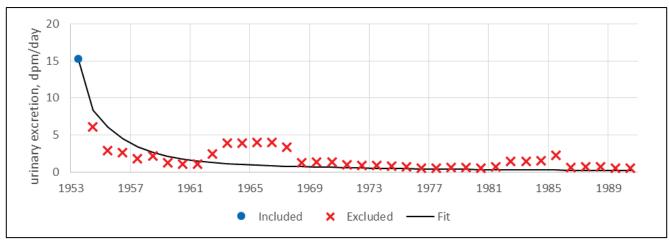


Figure E-111. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1953, type S.

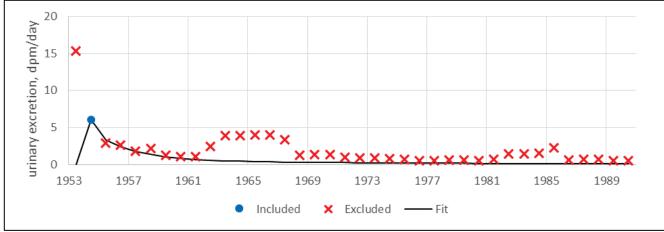


Figure E-112. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1954, type S.

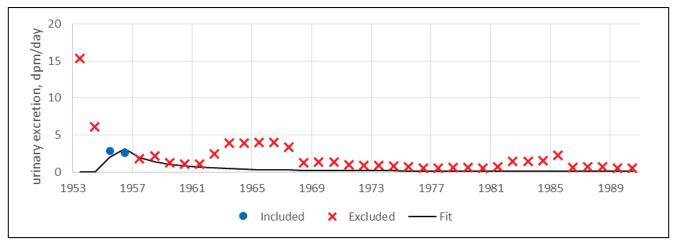


Figure E-113. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1955 to 1956, type S.

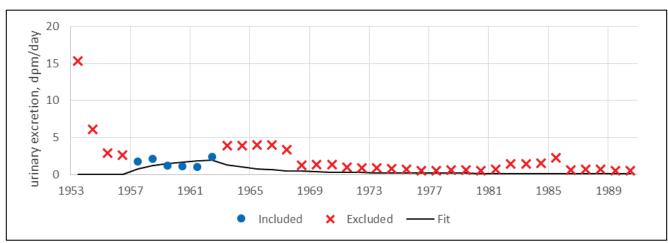


Figure E-114. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1957 to 1962, type S.

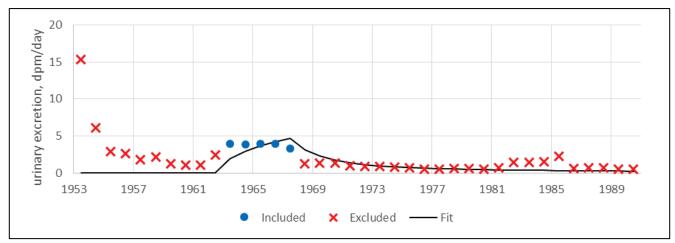


Figure E-115. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1963 to 1967, type S.

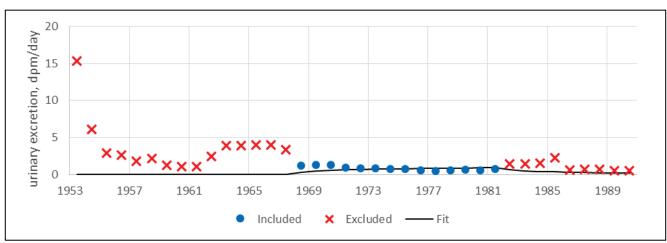


Figure E-116. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1968 to 1981, type S.

Revision No. 00

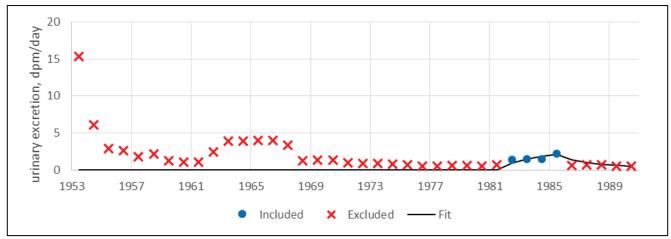


Figure E-117. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1982 to 1985, type S.

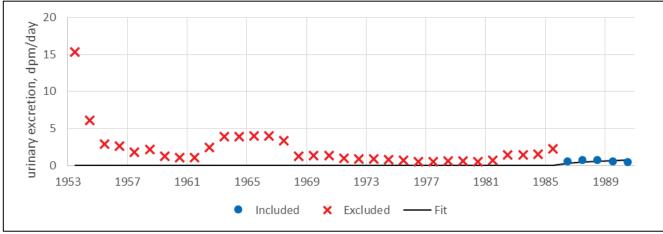


Figure E-118. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1986 to 1990, type S.

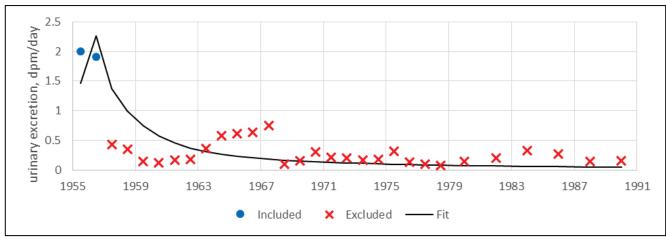


Figure E-119. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1955 to 1956, type S.

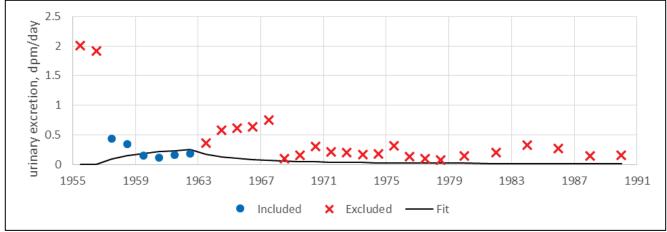


Figure E-120. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1957 to 1962, type S.

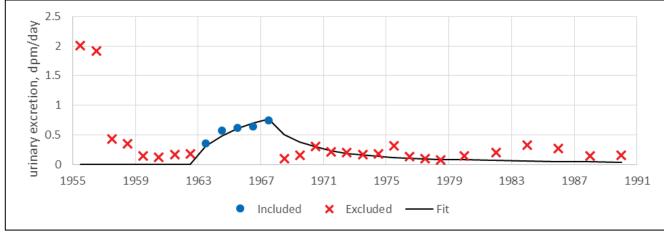


Figure E-121. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1963 to 1967, type S.

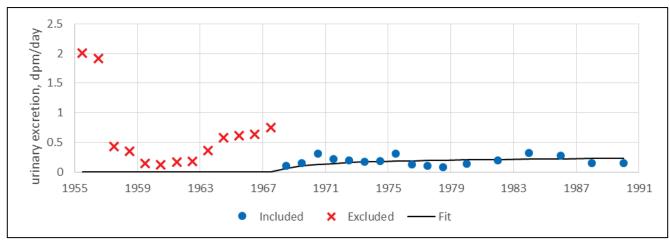


Figure E-122. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1968 to 1990, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

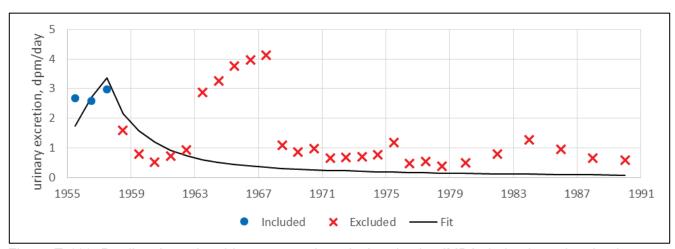


Figure E-123. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1955 to 1957, type S.

Revision No. 00

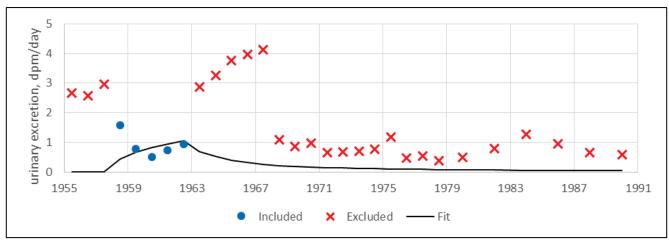


Figure E-124. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1958 to 1962, type S.



Figure E-125. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1963 to 1967, type S.

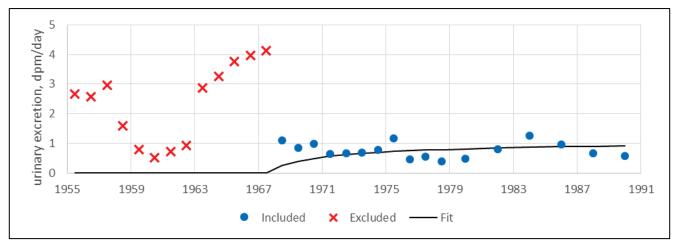


Figure E-126. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1968 to 1990, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Figure E-127. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, type S.

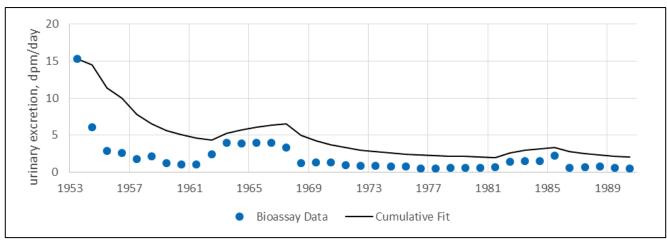


Figure E-128. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, type S.

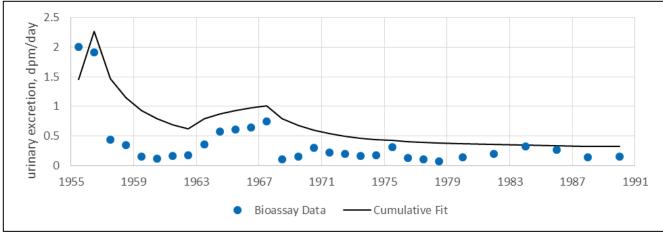


Figure E-129. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

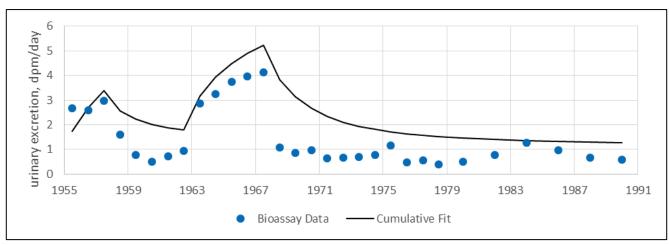


Figure E-130. Predicted uranium bioassay results calculated using IMBA-derived uranium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-9. Summary of uranium nonCTW intake rates (dpm/d) and dates, type F.

Table E-9. Summary of dramam none (w) intake rates (upm/u) and dates, type ().							
		50th	84th		Adjusted	95th	
Start	End	percentile	percentile	GSD	GSD	percentile	
01/01/1953	12/31/1953	36.19	56.88	1.57	3.00	220.52	
01/01/1954	12/31/1954	14.27	21.89	1.53	3.00	86.95	
01/01/1955	12/31/1956	7.095	9.791	1.38	3.00	43.23	
01/01/1957	12/31/1962	1.035	5.658	5.47	5.47	16.92	
01/01/1963	12/31/1967	2.366	13.77	5.82	5.82	42.89	
01/01/1968	12/31/1981	0.6054	2.778	4.59	4.59	7.42	
01/01/1982	12/31/1985	1.556	5.93	3.81	3.81	14.05	
01/01/1986	12/31/1990	0.646	2.087	3.23	3.23	4.45	

Table E-10. Summary of uranium nonCTW intake rates (dpm/d) and dates, type M.

14510 L 10.00	Table E 10: Gariffially of diaffialli florio 144 filtake rates (aprilya) and dates, type wi								
		50th	84th		Adjusted	95th			
Start	End	percentile	percentile	GSD	GSD	percentile			
01/01/1953	12/31/1953	175.1	275.2	1.57	3.00	1,066.97			
01/01/1954	12/31/1954	40.67	61.18	1.50	3.00	247.82			
01/01/1955	12/31/1956	26.46	36.24	1.37	3.00	161.23			
01/01/1957	12/31/1962	3.651	22.86	6.26	6.26	74.63			
01/01/1963	12/31/1967	9.768	57.23	5.86	5.86	179.01			
01/01/1968	12/31/1981	2.426	10.76	4.44	4.44	28.12			
01/01/1982	12/31/1985	6.469	24.85	3.84	3.84	59.20			
01/01/1986	12/31/1990	2.513	8.016	3.19	3.19	16.94			

Table E-11. Summary of uranium nonCTW intake rates (dpm/d) and dates, type S.

	-	50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	GSD	percentile
01/01/1953	12/31/1953	5,477	8,607	1.57	3.00	33,373.92
01/01/1954	12/31/1954	2,222	3,412	1.54	3.00	13,539.68
01/01/1955	12/31/1956	826.2	1,144	1.38	3.00	5,034.42
01/01/1957	12/31/1962	81.69	418.3	5.12	5.12	1,199.50
01/01/1963	12/31/1967	185.7	1,068	5.75	5.75	3,300.78
01/01/1968	12/31/1981	36.33	152.6	4.20	4.20	385.10
01/01/1982	12/31/1985	133.8	535	4.00	4.00	1,307.91
01/01/1986	12/31/1990	53.03	171.6	3.24	3.24	365.99

Table E-12. Summary of uranium CTW intake rates (dpm/d) and dates, type F.a

					, , ,	
Start	End	50th percentile	84th percentile	GSD	Adjusted GSD	95th percentile
01/01/1955	12/31/1956	7.243	10.12	1.40	3.00	44.13
01/01/1957	12/31/1957	0.7962	10.12	12.71	12.71	52.16
01/01/1958	12/31/1962	0.7962	3.232	4.06	4.06	7.98
01/01/1963	12/31/1967	2.124	13.12	6.18	6.18	42.46
01/01/1968	12/31/1990	0.6529	2.661	4.08	4.08	6.59

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-13. Summary of uranium CTW intake rates (dpm/d) and dates, type M.^a

	•	50th	84th	,	Adjusted	95th
Start	End	percentile	percentile	GSD	ĞSD	percentile
01/01/1955	12/31/1956	32.09	44.4	1.38	3.00	195.54
01/01/1957	12/31/1957	2.349	44.1	18.77	18.77	292.34
01/01/1958	12/31/1962	2.349	11.7	4.98	4.98	32.96
01/01/1963	12/31/1967	8.923	55.24	6.19	6.19	179.03
01/01/1968	12/31/1990	2.625	10.44	3.98	3.98	25.43

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-14. Summary of uranium CTW intake rates (dpm/d) and dates, type S.^a

		50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	GSD	percentile
01/01/1955	12/31/1956	821.4	975.9	1.19	3.00	5,005.17
01/01/1957	12/31/1957	53.65	975.9	18.19	18.19	6,338.69
01/01/1958	12/31/1962	53.65	239.1	4.46	4.46	626.89
01/01/1963	12/31/1967	176.2	1,057	6.00	6.00	3,356.83
01/01/1968	12/31/1990	35.68	141.6	3.97	3.97	344.50

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

E.4 STRONTIUM INTAKE MODELING RESULTS

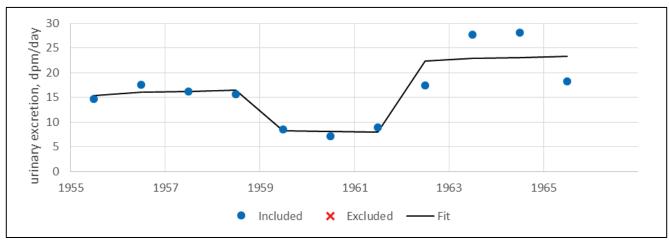


Figure E-131. Predicted FP (strontium) bioassay results calculated using IMBA-derived strontium intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years.

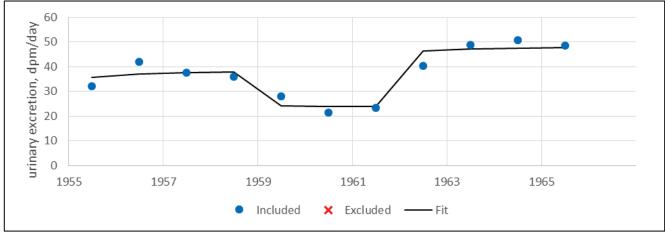


Figure E-132. Predicted FP (strontium) bioassay results calculated using IMBA-derived strontium intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years.

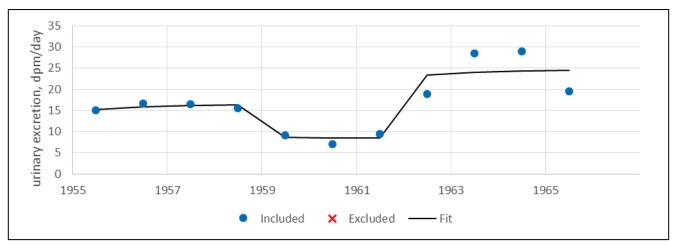


Figure E-133. Predicted FP (strontium) bioassay results calculated using IMBA-derived strontium intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

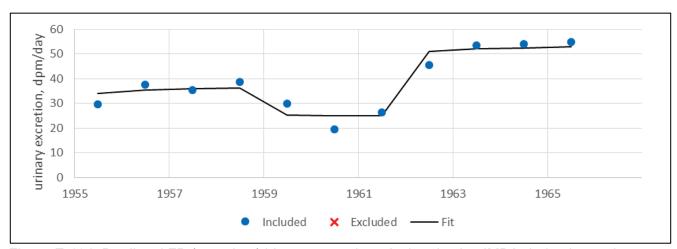


Figure E-134. Predicted FP (strontium) bioassay results calculated using IMBA-derived strontium intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-15. Summary of FP (strontium) nonCTW intake rates (dpm/d) and dates.

Start	End	50th percentile	84th percentile	GSD	Adjusted GSD	95th percentile
01/01/1955	12/31/1958	70.05	161.8	2.31	3.00	427
01/01/1959	12/31/1961	32.43	98.31	3.03	3.03	201
01/01/1962	12/31/1965	97.41	199.9	2.05	3.00	594

Table E-16. Summary of FP (strontium) CTW intake rates (dpm/d) and dates.

Start	End	50th percentile	84th percentile	GSD	Adjusted GSD	95th percentile
01/01/1955	12/31/1958	69.46	154.9	2.23	3.00	423
01/01/1959	12/31/1961	34.33	103.4	3.01	3.01	211
01/01/1962	12/31/1965	102.2	220.8	2.16	3.00	623

E.5 COBALT-60 INTAKE MODELING RESULTS

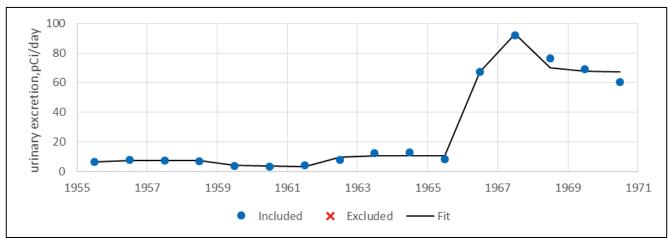


Figure E-135. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, type M.

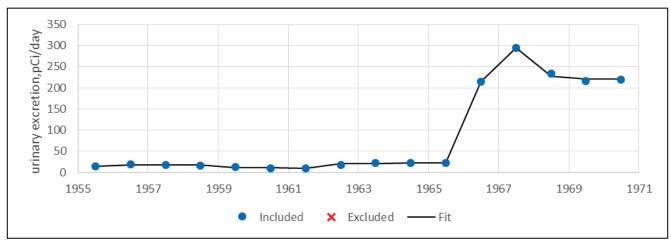


Figure E-136. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, type M.

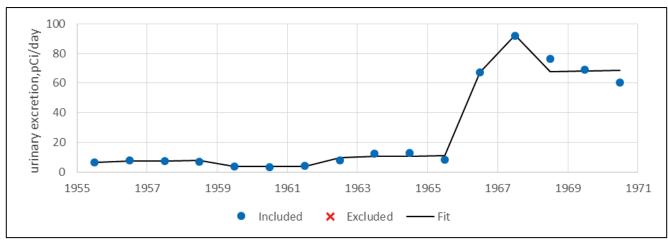


Figure E-137. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, type S.

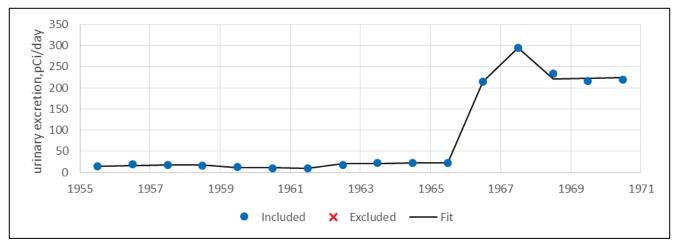


Figure E-138. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, type S.

Figure E-139. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type M.

Effective Date: 03/05/2024

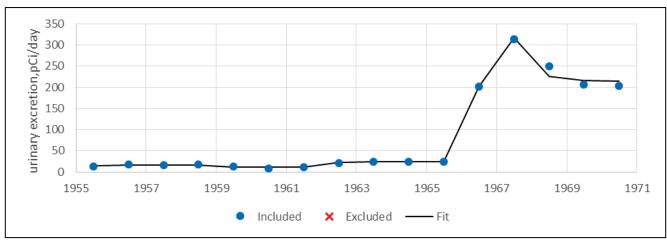


Figure E-140. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type M.

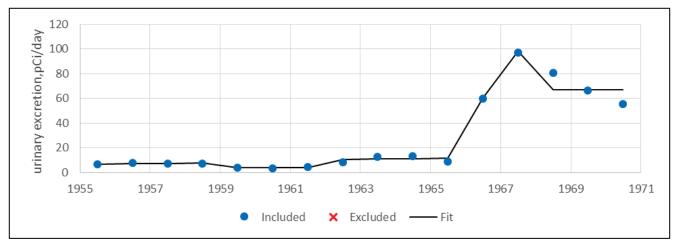


Figure E-141. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type S.

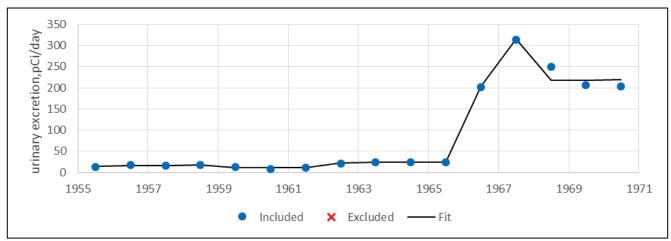


Figure E-142. Predicted ⁶⁰Co bioassay results calculated using IMBA-derived ⁶⁰Co intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type S.

Table E-17. Summary of ⁶⁰Co nonCTW type M intake rates (pCi/d) and dates.

Start	End	50th percentile	84th percentile	GSD	Adjusted GSD	95th percentile
01/01/1955	12/31/1958	91.56	212.1	2.32	3.00	558
01/01/1959	12/31/1961	39.72	122.2	3.08	3.08	252
01/01/1962	12/31/1965	128.6	262.1	2.04	3.00	784
01/01/1966	12/31/1966	930	2,989	3.21	3.21	6,347
01/01/1967	12/31/1967	1,185	3,773	3.18	3.18	7,963
01/01/1968	12/31/1970	804.8	2,636	3.28	3.28	5,666

Table E-18. Summary of 60Co nonCTW type S intake rates (pCi/d) and dates.

Table E 10: Canimary or Generio IVV type C intake rates (pora) and dates:							
		50th	84th		Adjusted	95th	
Start	End	percentile	percentile	GSD	GSD	percentile	
01/01/1955	12/31/1958	365	844.4	2.31	3.00	2,224	
01/01/1959	12/31/1961	146.6	457.5	3.12	3.12	953	
01/01/1962	12/31/1965	503.2	1,020	2.03	3.00	3,066	
01/01/1966	12/31/1966	3,654	11,730	3.21	3.21	24,889	
01/01/1967	12/31/1967	4,760	15,250	3.20	3.20	32,316	
01/01/1968	12/31/1970	3,137	10,300	3.28	3.28	22,175	

Table E-19. Summary of 60Co CTW type M intake rates (pCi/d) and dates.

Start	End	50th percentile	84th percentile	GSD	Adjusted GSD	95th percentile
01/01/1955	12/31/1958	90.85	203.4	2.24	3.00	554
01/01/1959	12/31/1961	42.34	129.3	3.05	3.05	266
01/01/1962	12/31/1965	135	290.1	2.15	3.00	823
01/01/1966	12/31/1966	825.7	2,816	3.41	3.41	6,213
01/01/1967	12/31/1967	1,282	4,110	3.21	3.21	8,713
01/01/1968	12/31/1970	785.4	2,567	3.27	3.27	5,510

Table E-20. Summary of 60Co CTW type S intake rates (pCi/d) and dates.

	•	50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	ĞSD	percentile
01/01/1955	12/31/1958	362.3	810	2.24	3.00	2,208
01/01/1959	12/31/1961	157.3	488.2	3.10	3.10	1,014
01/01/1962	12/31/1965	529.7	1,136	2.14	3.00	3,228
01/01/1966	12/31/1966	3,248	11,070	3.41	3.41	24,414
01/01/1967	12/31/1967	5,106	16,480	3.23	3.23	35,090
01/01/1968	12/31/1970	3,068	10,040	3.27	3.27	21,569

E.6 CESIUM-137 INTAKE MODELING RESULTS

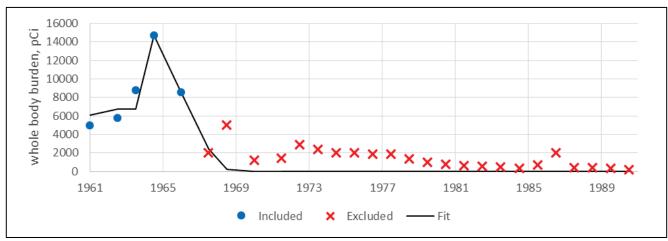


Figure E-143. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1960 to 1966, type F.

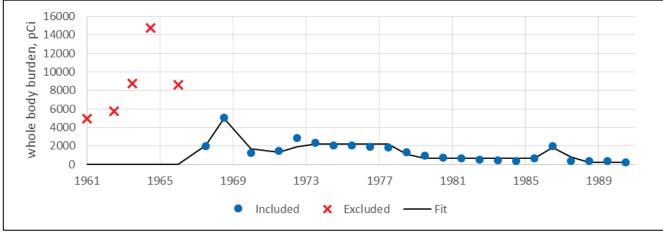


Figure E-144. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1967 to 1990, type F.

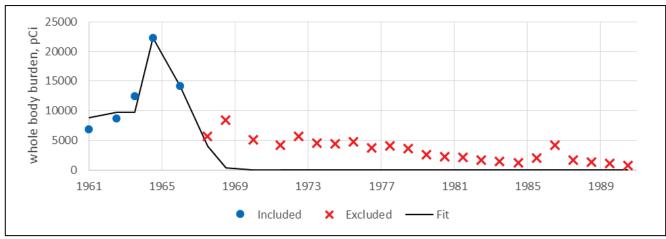


Figure E-145. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1960 to 1966, type F.

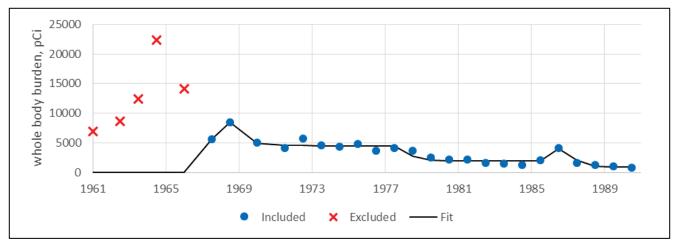


Figure E-146. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1967 to 1990, type F.

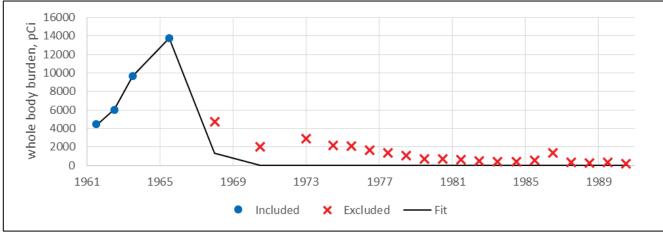


Figure E-147. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1960 to 1966, type F.

Effective Date: 03/05/2024

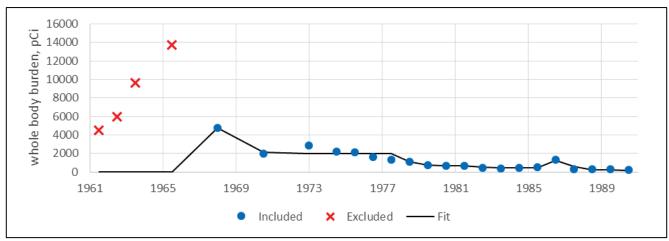


Figure E-148. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1967 to 1990, type F. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

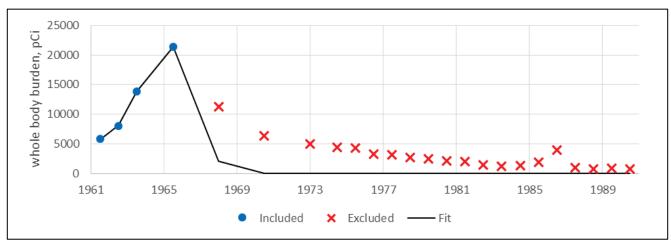


Figure E-149. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1960 to 1966, type F.

Effective Date: 03/05/2024

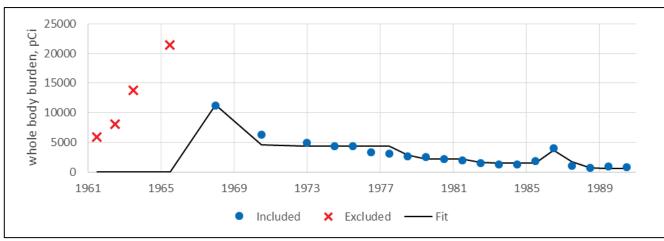


Figure E-150. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1967 to 1990, type F. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

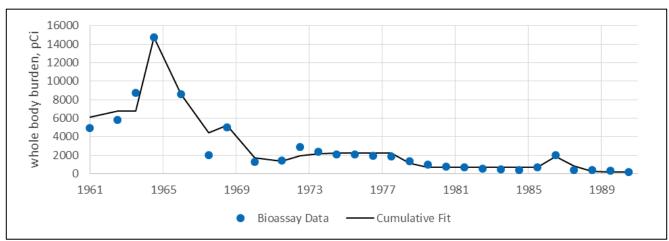


Figure E-151. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, type F.

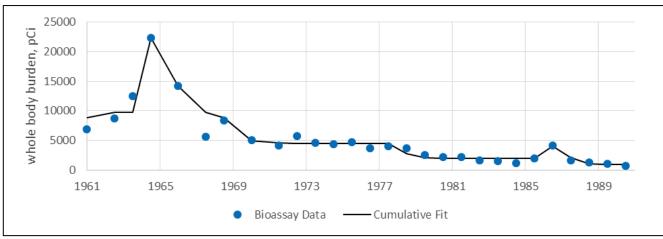


Figure E-152. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, type F.

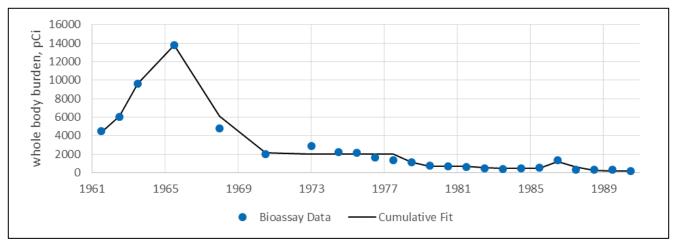


Figure E-153. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, type F. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

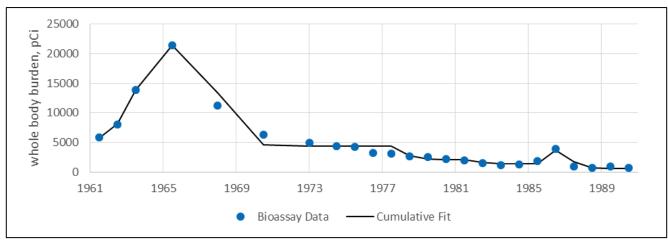


Figure E-154. Predicted ¹³⁷Cs bioassay results calculated using IMBA-derived ¹³⁷Cs intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, type F. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-21. Summary of ¹³⁷Cs nonCTW type F intake rates (pCi/d) and dates.

Table L-Z I. S	diffillary of	CS HOLICT W type I ilitake lates ()			poliu) and dates.		
		50th	84th		Adjusted	95th	
Start	End	percentile	percentile	GSD	GSD	percentile	
01/01/1960	12/31/1963	98.14	141.5	1.44	3.00	598.01	
01/01/1964	12/31/1964	266.8	407.5	1.53	3.00	1,625.74	
01/01/1965	12/31/1966	111.3	187.3	1.68	3.00	678.20	
01/01/1967	12/31/1967	42.98	119.8	2.79	3.00	261.90	
01/01/1968	12/31/1968	87.45	129.2	1.48	3.00	532.87	
01/01/1969	12/31/1971	18.86	66.49	3.53	3.53	149.87	
01/01/1972	12/31/1977	31.86	65.63	2.06	3.00	194.14	
01/01/1978	12/31/1985	9.396	28.87	3.07	3.07	59.55	
01/01/1986	12/31/1986	34.84	71.2	2.04	3.00	212.30	
01/01/1987	12/31/1990	2.819	13.04	4.63	4.63	35.02	

Table E-22. Summary of ¹³⁷Cs CTW type F intake rates (pCi/d) and dates.^a

		50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	GSD	percentile
01/01/1961	12/31/1962	91.38	122	1.34	3.00	556.82
01/01/1963	12/31/1963	162.6	237.9	1.46	3.00	990.80
01/01/1964	12/31/1966	201.2	313.8	1.56	3.00	1,226.01
01/01/1967	12/31/1968	76.32	182.2	2.39	3.00	465.05
01/01/1969	12/31/1977	29.21	62.96	2.16	3.00	177.99
01/01/1978	12/31/1981	9.72	31.15	3.21	3.21	66.04
01/01/1982	12/31/1985	6.556	20.9	3.19	3.19	44.15
01/01/1986	12/31/1986	22.95	67.8	2.95	3.00	139.85
01/01/1987	12/31/1990	2.697	8.476	3.14	3.14	17.74

These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

E.7 NEPTUNIUM INTAKE MODELING RESULTS

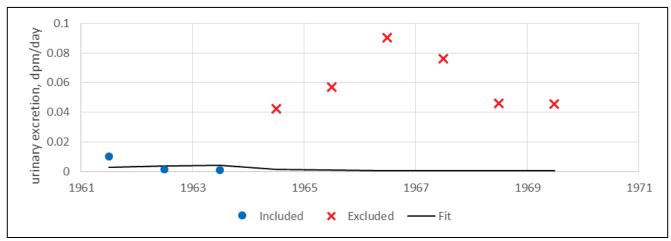


Figure E-155. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1961 to 1963, type M.

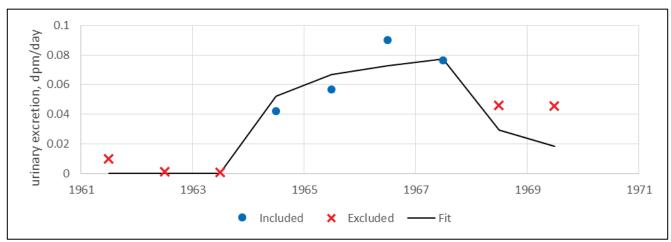


Figure E-156. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1964 to 1967, type M.

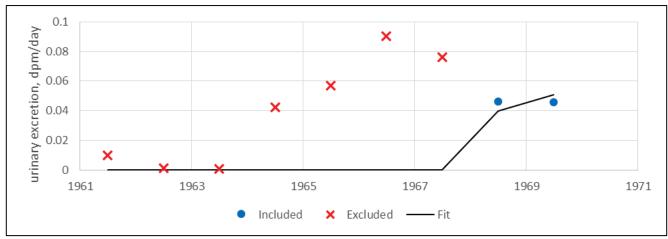


Figure E-157. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1968 to 1969, type M.

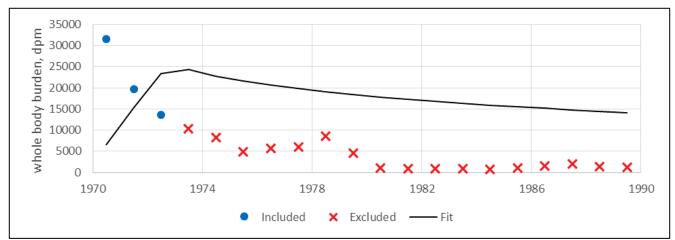


Figure E-158. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1970 to 1972, type M.

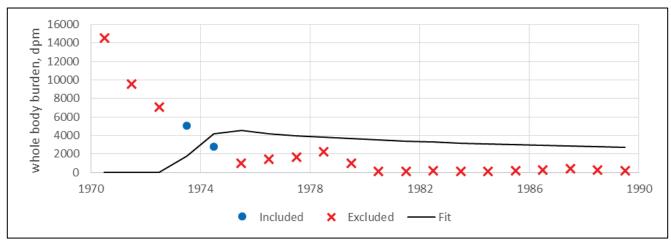


Figure E-159. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1973 to 1974, type M.

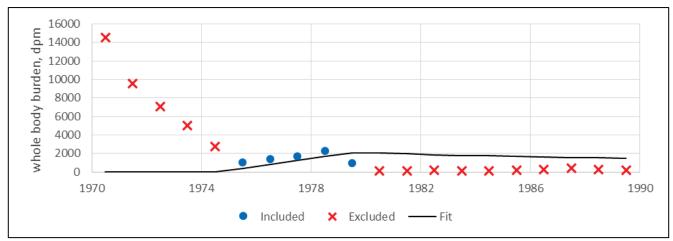


Figure E-160. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1975 to 1979, type M.

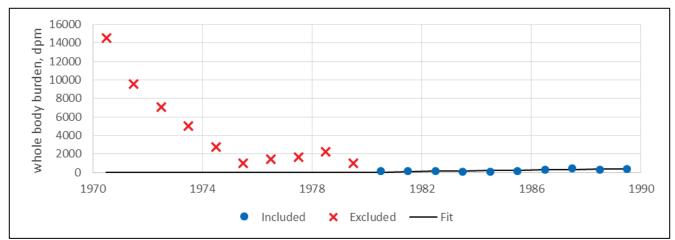


Figure E-161. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 1980 to 1989, type M.

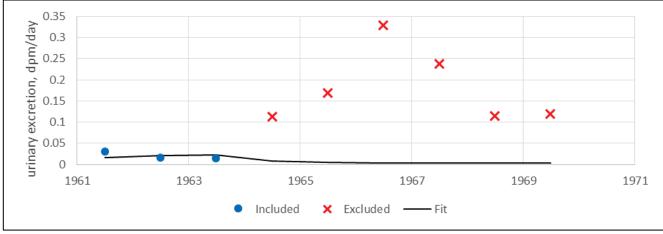


Figure E-162. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1961 to 1963, type M.

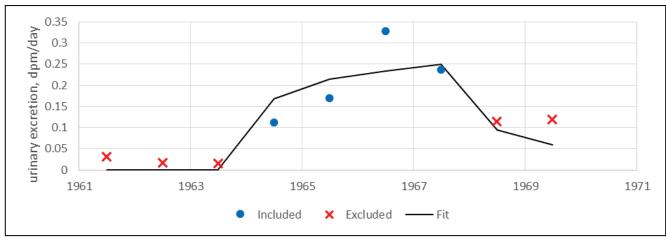


Figure E-163. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1964 to 1967, type M.

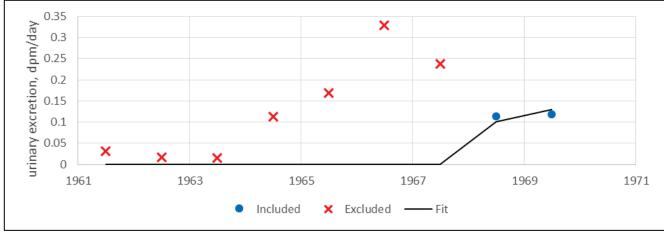


Figure E-164. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1968 to 1969, type M.

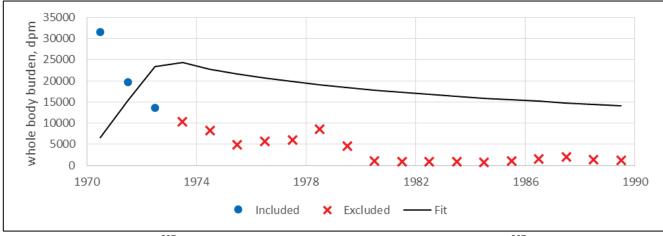


Figure E-165. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1970 to 1972, type M.

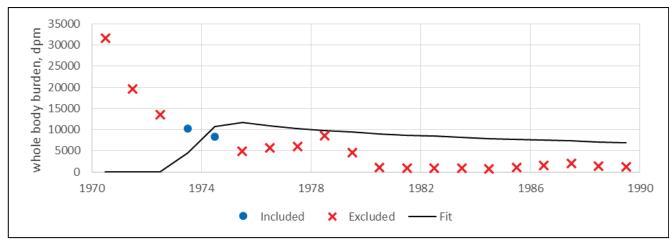


Figure E-166. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1973 to 1974, type M.

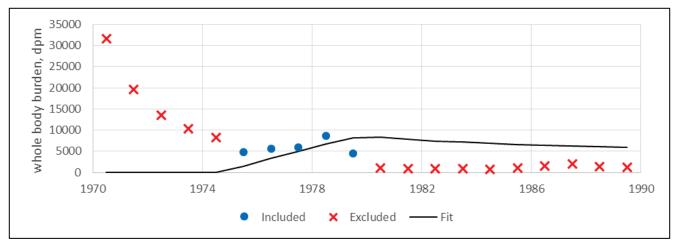


Figure E-167. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1975 to 1979, type M.

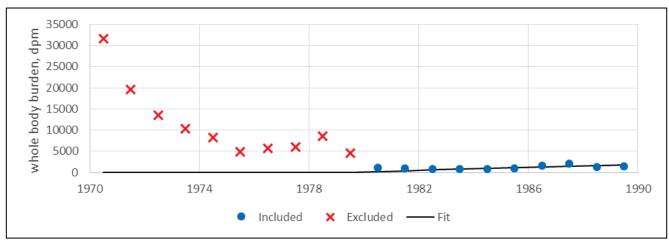


Figure E-168. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 1980 to 1989, type M.

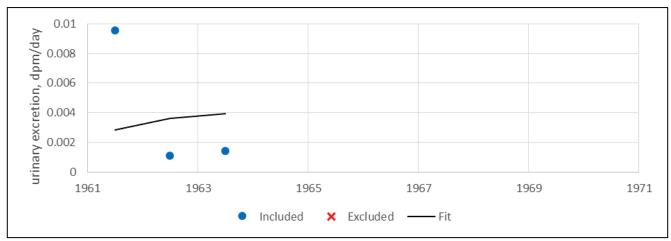


Figure E-169. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1961 to 1963, type M.

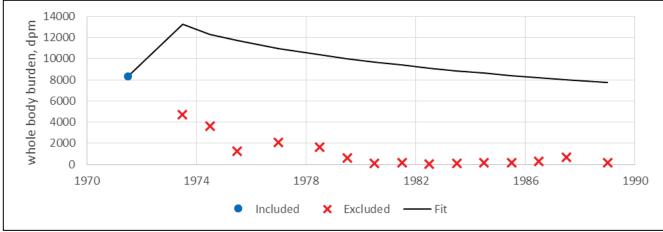


Figure E-170. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1970 to 1972, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

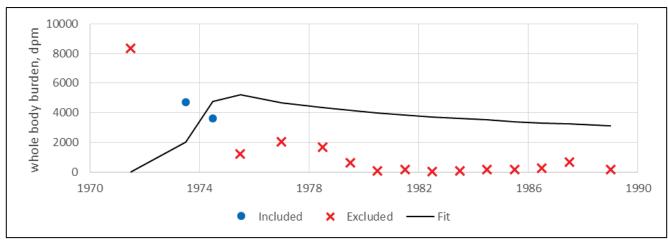


Figure E-171. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1973 to 1974, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

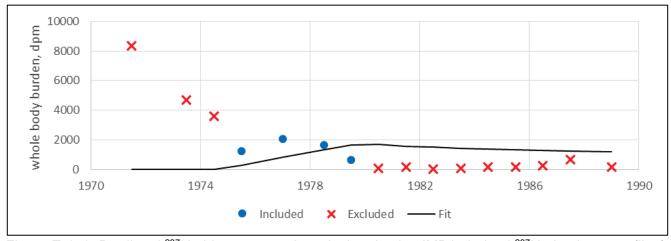


Figure E-172. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1975 to 1979, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Effective Date: 03/05/2024

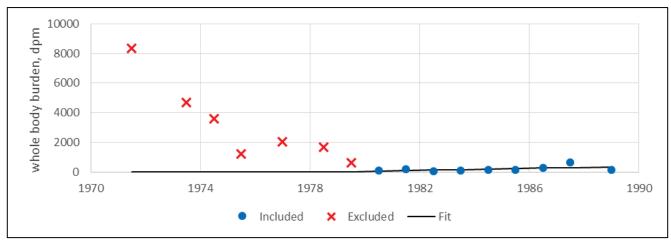


Figure E-173. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 1980 to 1989, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

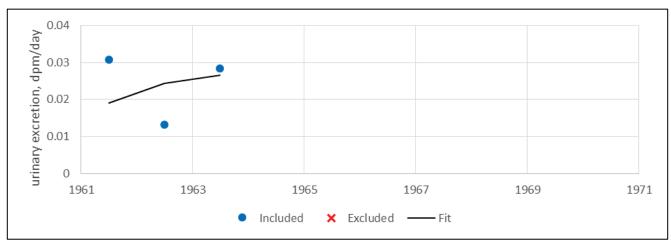


Figure E-174. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1961 to 1963, type M.

Revision No. 00

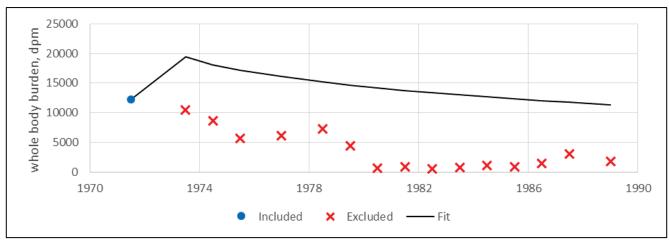


Figure E-175. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1970 to 1972, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

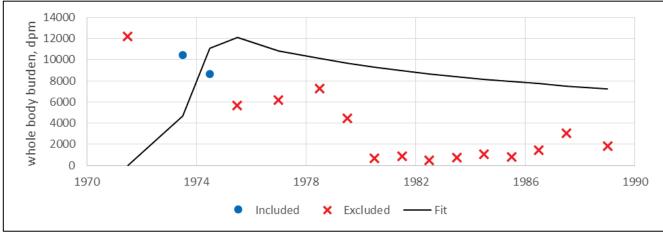


Figure E-176. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1973 to 1974, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

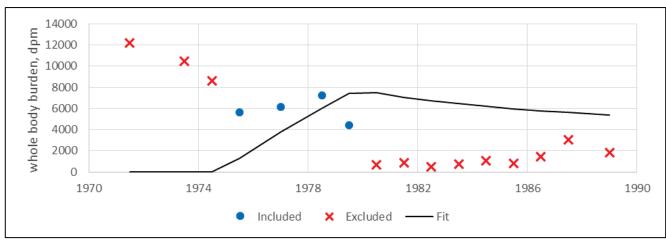


Figure E-177. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1975 to 1979, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

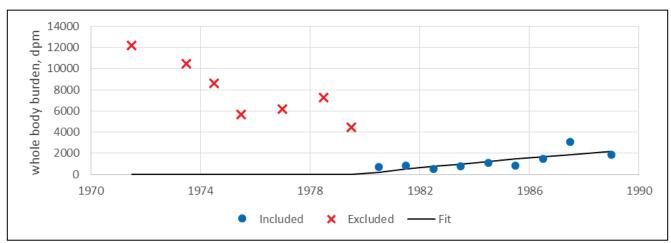


Figure E-178. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 1980 to 1989, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

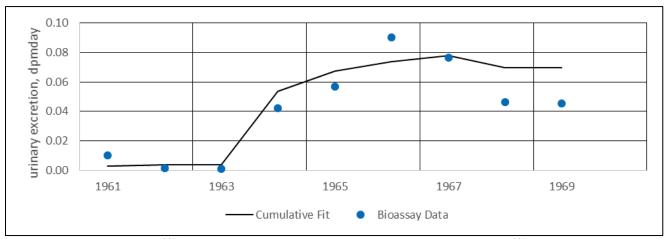


Figure E-179. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, urinalysis results, type M.

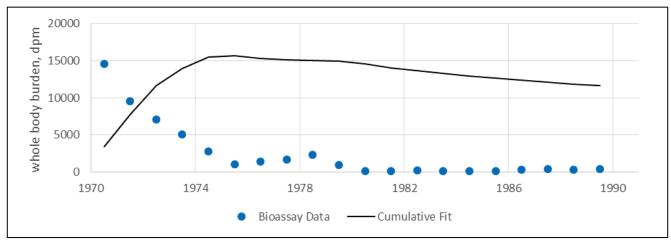


Figure E-180. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW all years, WBCs, type M.

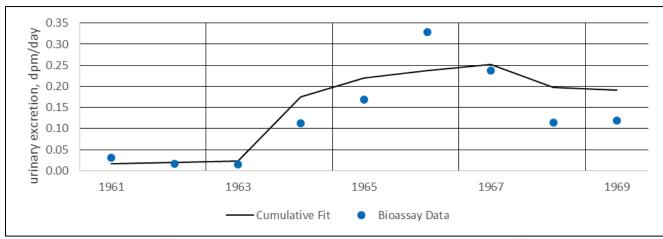


Figure E-181. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, urinalysis results, type M.

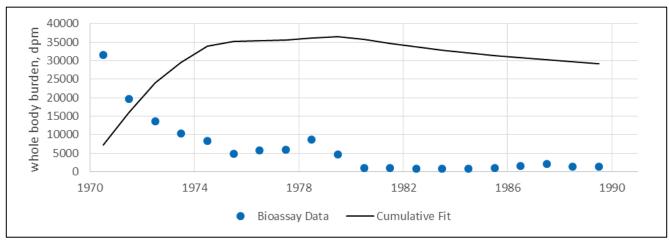


Figure E-182. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW all years, WBCs, type M.

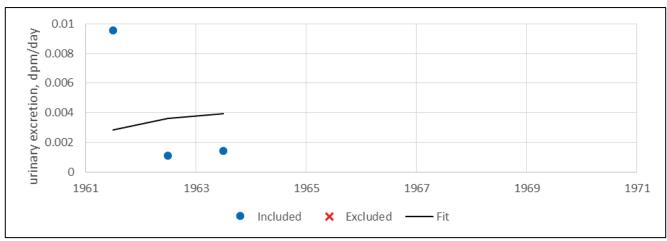


Figure E-183. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, urinalysis results, type M.

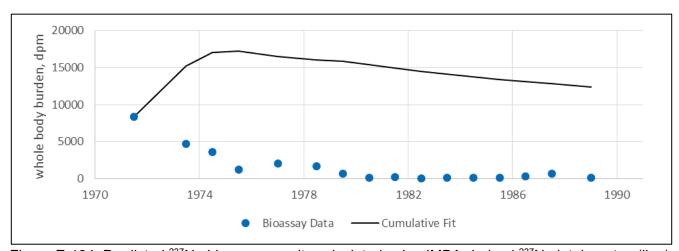


Figure E-184. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW all years, WBCs, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Effective Date: 03/05/2024

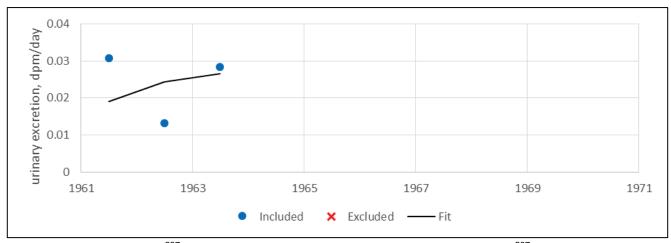


Figure E-185. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, urinalysis results, type M.

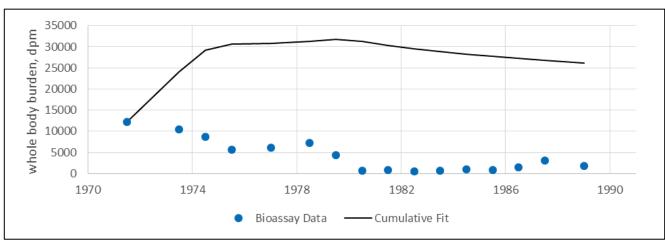


Figure E-186. Predicted ²³⁷Np bioassay results calculated using IMBA-derived ²³⁷Np intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW all years, WBCs, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-23. Summary of ²³⁷Np nonCTW intake rates (dpm/d) and dates.

Start	End	50th	84th	GSD	Adjusted GSD	95th
		percentile	percentile			percentile
01/01/1961	12/31/1963	0.1541	0.8663	5.62	5.62	2.638
01/01/1964	12/31/1967	2.844	9.146	3.22	3.22	19.43
01/01/1968	12/31/1969	2.16	5.499	2.55	3.00	13.16
01/01/1970	12/31/1972	297.7	605.5	2.03	3.00	1,814
01/01/1973	12/31/1974	163.6	422.5	2.58	3.00	996.9
01/01/1975	12/31/1979	32.76	130.5	3.98	3.98	318.3
01/01/1980	12/31/1989	3.183	15.54	4.88	4.88	43.21

Table E-24. Summary of ²³⁷Np CTW intake rates (dpm/d) and dates.^a

	-	50th	84th	-	Adjusted	95th
Start	End	percentile	percentile	GSD	GSD	percentile
01/01/1961	12/31/1963	0.1545	1.036	6.71	6.71	3.535
01/01/1970	12/31/1972	328.2	481.2	1.47	3.00	2,000
01/01/1973	12/31/1974	186.8	435.4	2.33	3.00	1,138
01/01/1975	12/31/1979	26.36	117.7	4.47	4.47	309
01/01/1980	12/31/1989	3.119	19.47	6.24	6.24	63.44

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

E.8 THORIUM INTAKE MODELING RESULTS

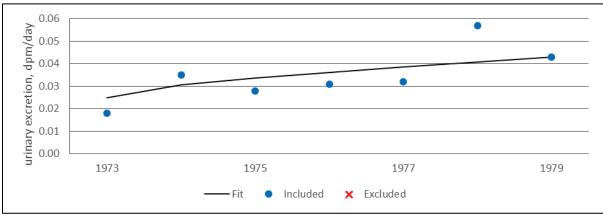


Figure E-187. Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 11/01/1972 to 05/31/1980, type M.



Figure E-188. Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 11/01/1972 to 05/31/1980, type M.

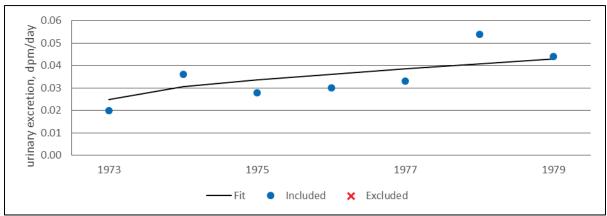


Figure E-189. Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 11/01/1972 to 05/31/1980, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

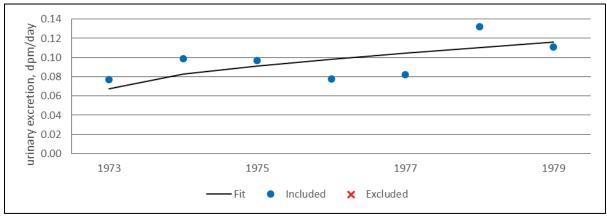


Figure E-190. Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 11/01/1972 to 05/31/1980, type M. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

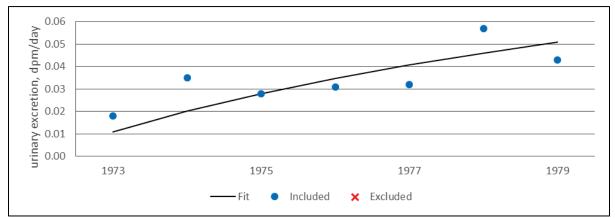


Figure E-191. Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, nonCTW 11/01/1972 to 05/31/1980, type S.

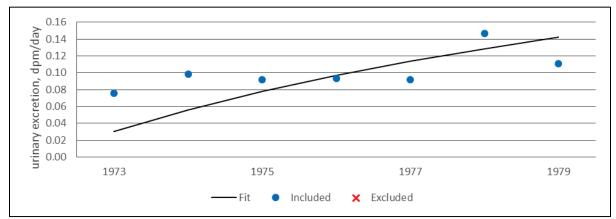


Figure E-192. Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, nonCTW 11/01/1972 to 05/31/1980, type S.

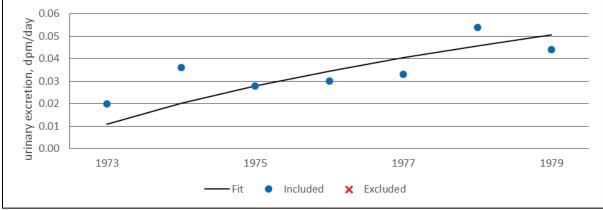


Figure E-193. Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 50th percentile, CTW 11/01/1972 to 05/31/1980, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

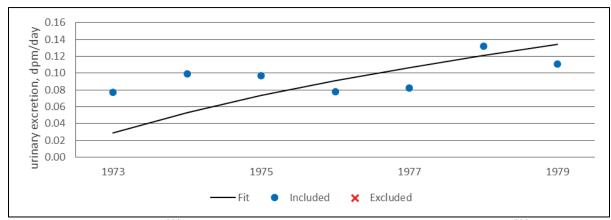


Figure E-194. Predicted ²³²Th bioassay results calculated using IMBA-derived ²³²Th intake rates (line) compared with measured bioassay results (dots), 84th percentile, CTW 11/01/1972 to 05/31/1980, type S. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-25. Summary of type M ²³²Th intake rates (dpm/d) and dates.

nonCTW

Start	End	50th percentile	84th percentile	GSD	Adjusted GSD	95th percentile
11/01/1972	05/31/1980	4.91	14.0	2.86	3.00	29.9

CTW^a

		50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	GSD	percentile
11/01/1972	05/31/1980	4.91	13.3	2.71	3.00	29.9

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.

Table E-26. Summary of type S ²³²Th intake rates (dpm/d) and dates.

nonCTW

		50th	84th		Adjusted	95th		
Start	End	percentile	percentile	GSD	GSD	percentile		
11/01/1972	05/31/1980	92.5	258	2.79	3.00	564		

CTW^a

		50th	84th		Adjusted	95th
Start	End	percentile	percentile	GSD	GSD	percentile
11/01/1972	05/31/1980	92.1	243	2.64	3.00	561

a. These values do not apply to subcontractor CTWs between October 1, 1972 and December 31, 1990.