[bookmark: _GoBack]Appendix A. Notation

· Census tracts are denoted by 
· Observations are denoted by  for the 
·  - outcome ( smoking) for observation 
·  - is the census tract for observation 
·  - is the raked sampling weight for observation 
·  - zip code for observation 
·  -True census tract level population prevalence
[bookmark: imputation-of-census-tract]Appendix B. Imputation of Census Tract
The Department of Housing and Urban Development (HUD) provides the estimated proportion of a zip code's total residential addresses, which fall within each census tract (CT). For example, if zip code  overlaps with 5 census tracts, we would have  and  where

and . We assume that the probability of being from CT  given you are in zip code  is .
For observations with missing census tracts, we impute a census tract based on a multinomial distribution with the HUD probabilities (). For a single imputation each observation  is assigned to census  creating a set of indices . The imputation is repeated  times, resulting in  complete observation data sets (no missing census tracts).
[bookmark: hierarchical-bayesian-model]Appendix C. Hierarchical Bayesian Model
For each complete data set  our approach is to summarize the data in census tract  via the asymptotic distribution of the estimator of , which we denote , the Hajek estimator (1)  of , with corresponding variance estimator var. In this way the design is acknowledged in both the estimator and the variance. We define the area-level data summary as  as the empirical logistic transform of . This approach constrains the probability to lie in (0,1). The likelihood is then taken as the asymptotic distribution

We employ three-stage models with the first stage given by  above, which was shown to perform well in a small area estimation context and has been applied to annual zipcode-level BRFSS data (2). When the  we have  which is problematic in the first stage of our model. In these cases we use the method of moments based on a beta-binomial model described in the supplementary materials of (3) to provide  and  that are adjusted to be non-zero.
At the second stage of the model we introduce the spatial random effects terms, corresponding to the convolution model of (4), and denote the area-specific parameters as

where  is the overall risk level,  is an independent census tract random effect, and  following an intrinsic conditional autoregressive (ICAR) model (5). The ICAR model is a non-parametric, stochastic smoothing model with

where  indexes the set of neighbors of area ,  is the number of such neighbors and  is the mean of the neighbors.
For the third stage we use assign Gamma priors on the spatial conditional precision  and the  precision parameter . The rate and shape parameters, 0.5 and 0.008, respectively, were selected such that the 95% range is on the interpretable  and  scale of (0.056,4.04). We use an improper flat prior on .
[bookmark: combining-estimates]Appendix D. Combining Estimates
Our goal is to describe the posterior distribution of  given the observed data. We assume  are the set of observed census tracts and  are the missing census tracts

where . In our current implementation  is the multinomial distribution based on HUD data, but in principle could involve other covariates.
Given our set of  smoothed estimates of each  we find the mean posterior estimate

where  is the estimated  from the th complete data set.
Similarly we find a variance

where  (the posterior variance of  based on the th complete dataset). This variance estimate has contributions from within and between the sets of estimates (1). 
Finally, estimates for census tract  are derived from expit() and 95% credible intervals are generated using





Appendix E. Scatter Plots Comparing Direct Estimates with Smoothed Estimates By Sample Size
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	Direct to MI Smoothed
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